A series of mobile and stationary meteorological measurements were performed in the city of Mendoza, Argentina to study the local influence of green areas on the urban canopy layer heat island effect at the micro scal...A series of mobile and stationary meteorological measurements were performed in the city of Mendoza, Argentina to study the local influence of green areas on the urban canopy layer heat island effect at the micro scale, during the Austral summer of 2003-2005. These results were associated in representative local climate zones (LCZ), which helped to identify different thermal conditions within the city. The physiologically equivalent temperature index was used to determine the thermal comfort in each LCZ, showing that during daylight, trees and parks improve thermal comfort through shading and evapotranspiration;but at the same time, urban tree corridors delay night cooling by retaining warm air beneath their canopies. Also irrigation showed to positively influence on the extension and intensity of the cooling effect of rural areas and parks. The cooling influence of an urban park spreads out through the neighborhoods for 800 - 1000 m, with an average temperature decrease of 1.3°C during daytime and >4.0°C at nighttime.展开更多
文摘A series of mobile and stationary meteorological measurements were performed in the city of Mendoza, Argentina to study the local influence of green areas on the urban canopy layer heat island effect at the micro scale, during the Austral summer of 2003-2005. These results were associated in representative local climate zones (LCZ), which helped to identify different thermal conditions within the city. The physiologically equivalent temperature index was used to determine the thermal comfort in each LCZ, showing that during daylight, trees and parks improve thermal comfort through shading and evapotranspiration;but at the same time, urban tree corridors delay night cooling by retaining warm air beneath their canopies. Also irrigation showed to positively influence on the extension and intensity of the cooling effect of rural areas and parks. The cooling influence of an urban park spreads out through the neighborhoods for 800 - 1000 m, with an average temperature decrease of 1.3°C during daytime and >4.0°C at nighttime.