期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于视角转换的多视角步态识别方法 被引量:1
1
作者 瞿斌杰 孙韶媛 +1 位作者 samah a.f.manssor 赵国顺 《计算机工程》 CAS CSCD 北大核心 2021年第6期210-216,共7页
针对步态识别中步态视角变化、步态数据样本量少及较少利用步态时间信息等问题,提出一种基于视角转换的步态识别方法。通过VTM-GAN网络,将不同视角下的步态能量图及含有步态时间信息的彩色步态能量图,统一映射到保留步态信息最丰富的侧... 针对步态识别中步态视角变化、步态数据样本量少及较少利用步态时间信息等问题,提出一种基于视角转换的步态识别方法。通过VTM-GAN网络,将不同视角下的步态能量图及含有步态时间信息的彩色步态能量图,统一映射到保留步态信息最丰富的侧视图视角,以此突破步态识别中多视角的限制,在视角转换的基础上,通过构建侧视图下的步态正负样本对来扩充用于网络训练的数据,并采用基于距离度量的时空双流卷积神经网络作为步态识别网络。在CASIA-B数据集上的实验结果表明,该方法在各状态、各角度下的平均识别准确率达到92.5%,优于3DCNN、SST-MSCI等步态识别方法。 展开更多
关键词 步态识别 视角转换 VTM-GAN网络 时空双流卷积神经网络 CASIA-B数据集
下载PDF
基于频域注意力时空卷积网络的步态识别方法 被引量:3
2
作者 赵国顺 方建安 +2 位作者 瞿斌杰 samah AFManssor 孙韶媛 《信息技术与网络安全》 2020年第6期13-18,共6页
为了解决步态信息冗余多、特征重要性分布不均匀以及步态的时空特征难以学习的问题,提出了基于频域注意力的时空卷积网络进行步态识别。该方法改进了三维卷积网络(C3D)学习时空特征,同时提出了一种频域注意力卷积操作,既减少了冗余计算... 为了解决步态信息冗余多、特征重要性分布不均匀以及步态的时空特征难以学习的问题,提出了基于频域注意力的时空卷积网络进行步态识别。该方法改进了三维卷积网络(C3D)学习时空特征,同时提出了一种频域注意力卷积操作,既减少了冗余计算,注意力的调整又提高了学习效果。网络首先将步态信息划分为五组,然后通过改进的卷积进行时空特征抽取,最后通过Softmax层进行分类。在中科大数据集CASIA dataset B中进行测试,在Bag状态与Coat状态下准确率分别为88.5%、92.8%,分别较传统深度卷积网络(Deep CNN)提升3%左右,同时注意力在网络学习中重新分布,各个角度下的准确率也平均提升2%左右。 展开更多
关键词 频域 注意力 三维卷积 步态识别 生物特征 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部