Dynamic state estimation(DSE)accurately tracks the dynamics of power systems and demonstrates the evolution of the system state in real time.This paper proposes a DSE approach for a doubly-fed induction generator(DFIG...Dynamic state estimation(DSE)accurately tracks the dynamics of power systems and demonstrates the evolution of the system state in real time.This paper proposes a DSE approach for a doubly-fed induction generator(DFIG)with unknown inputs based on adaptive interpolation and cubature Kalman filter(AICKF-UI).DFIGs adopt different control strategies in normal and fault conditions;thus,the existing DSE approaches based on the conventional control model of DFIG are not applicable in all cases.Consequently,the DSE model of DFIGs is reformulated to consider the converter controller outputs as unknown inputs,which are estimated together with the DFIG dynamic states by an exponential smoothing model and augmented-state cubature Kalman filter.Furthermore,as the reporting rate of existing synchro-phasor data is not sufficiently high to capture the fast dynamics of DFIGs,a large estimation error may occur or the DSE approach may diverge.To this end,in this paper,a local-truncation-error-guided adaptive interpolation approach is developed.Extensive simulations conducted on a wind farm and the modified IEEE 39-bus test system show that the proposed AICKF-UI can(1)effectively address the divergence issues of existing cubature Kalman filters while being computationally more efficient;(2)accurately track the dynamic states and unknown inputs of the DFIG;and(3)deal with various types of system operating conditions such as time-varying wind and different system faults.展开更多
This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conven...This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conventional periodic perturbation maximum power point tracking technique. Firstly, under a closed-loop circuit and an open-loop circuit,the complete I-V curves and P-V curves are defined. Secondly, the proposed MPPC technique is based on the complete I-V curves and a practical model of solar PV systems.The proposed method realizes that maximum power point(MPP) is captured online, and its control strategy is designed to set a steady operating area around MPP. The duty cycle keeps constant when the operating point is within the steady operating area, i.e., aperiodic perturbation, and when the operating point is outside the steady operating area, MPPC is triggered to capture a new MPP with an updated steady operating area. Simulation results demonstrate that no oscillations exist in steady-state;dynamic performances are improved;and only two perturbations are required to capture the new MPP. Using the proposed MPPC method,low voltage ride through and high voltage ride through can be prevented.展开更多
Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high opera...Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high operation frequency,the LLC resonant converters are widely used in various sectors of the electronics-based industries.The history and development of the LLC resonant converters are presented,their advantages are analyzed,three of the most popular LLC resonant converter topologies with detailed assessments of their strengths and drawbacks are elaborated.Furthermore,an important piece of research on the industrial applications of the LLC resonant converters is conducted,mainly including electric vehicle(EV)charging,photovoltaic systems,and light emitting diode(LED)lighting drivers and liquid crystal display(LCD)TV power supplies.Finally,the future evolution of the LLC resonant converter technology is discussed.展开更多
基金supported by the National Natural Science Foundation of China(No.51725702)。
文摘Dynamic state estimation(DSE)accurately tracks the dynamics of power systems and demonstrates the evolution of the system state in real time.This paper proposes a DSE approach for a doubly-fed induction generator(DFIG)with unknown inputs based on adaptive interpolation and cubature Kalman filter(AICKF-UI).DFIGs adopt different control strategies in normal and fault conditions;thus,the existing DSE approaches based on the conventional control model of DFIG are not applicable in all cases.Consequently,the DSE model of DFIGs is reformulated to consider the converter controller outputs as unknown inputs,which are estimated together with the DFIG dynamic states by an exponential smoothing model and augmented-state cubature Kalman filter.Furthermore,as the reporting rate of existing synchro-phasor data is not sufficiently high to capture the fast dynamics of DFIGs,a large estimation error may occur or the DSE approach may diverge.To this end,in this paper,a local-truncation-error-guided adaptive interpolation approach is developed.Extensive simulations conducted on a wind farm and the modified IEEE 39-bus test system show that the proposed AICKF-UI can(1)effectively address the divergence issues of existing cubature Kalman filters while being computationally more efficient;(2)accurately track the dynamic states and unknown inputs of the DFIG;and(3)deal with various types of system operating conditions such as time-varying wind and different system faults.
基金supported in part by Australian Research Council (ARC) Discovery Project (No. DP170104426)
文摘This paper proposes a novel high-efficiency generation technique for photovoltaic(PV) system,named maximum power point capturing(MPPC) technique. This is an aperiodic perturbation MPPC technique compared to the conventional periodic perturbation maximum power point tracking technique. Firstly, under a closed-loop circuit and an open-loop circuit,the complete I-V curves and P-V curves are defined. Secondly, the proposed MPPC technique is based on the complete I-V curves and a practical model of solar PV systems.The proposed method realizes that maximum power point(MPP) is captured online, and its control strategy is designed to set a steady operating area around MPP. The duty cycle keeps constant when the operating point is within the steady operating area, i.e., aperiodic perturbation, and when the operating point is outside the steady operating area, MPPC is triggered to capture a new MPP with an updated steady operating area. Simulation results demonstrate that no oscillations exist in steady-state;dynamic performances are improved;and only two perturbations are required to capture the new MPP. Using the proposed MPPC method,low voltage ride through and high voltage ride through can be prevented.
基金Supported by the National Natural Science Foundation of China(51907032)the Natural Science Foundation of Guangdong Province(2018A030313365).
文摘Owing to the advantages of high efficiency,high energy density,electrical isolation,low electromagnetic interference(EMI)and harmonic pollution,magnetic integration,wide output ranges,low voltage stress,and high operation frequency,the LLC resonant converters are widely used in various sectors of the electronics-based industries.The history and development of the LLC resonant converters are presented,their advantages are analyzed,three of the most popular LLC resonant converter topologies with detailed assessments of their strengths and drawbacks are elaborated.Furthermore,an important piece of research on the industrial applications of the LLC resonant converters is conducted,mainly including electric vehicle(EV)charging,photovoltaic systems,and light emitting diode(LED)lighting drivers and liquid crystal display(LCD)TV power supplies.Finally,the future evolution of the LLC resonant converter technology is discussed.