A widely accepted standpoint contends that plant growth near the cold edge of the species range,such as treelines,does not depend on the annual temperature seasonality(i.e.difference between maximum and minimum temper...A widely accepted standpoint contends that plant growth near the cold edge of the species range,such as treelines,does not depend on the annual temperature seasonality(i.e.difference between maximum and minimum temperature values) but rather on the warmth of summer season.In contrast to this expectation,we show that the growth of treeline Norway spruce(Picea abies) is well explained by temperature seasonality as a single climatic determinant.To do so,the tree-ring data of spruce trees growing on alpine treeline in Lapland was compared with long climate records.Biennial time-series of temperature seasonality capture both the decadal and abrupt growth fluctuations with a correlation coefficient of r = 0.601.We also show that the archetypal association between summer temperature and treeline tree growth may in fact be by far a more complex relationship than previously thought.Spruce growth appears responsive to lateJune(r = 0.494) and mid-July(r = 0.310) temperatures but unresponsive to temperatures during the early July,that is,during the grand period of the tracheid formation.Climatic warming may enhance the treeline spruce growth unless the warming is concentrated on unresponsive interval in the midst of the growing season.Water relations did not play significant role as agents of P.abies growth.展开更多
The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruc...The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.展开更多
Cryophenological records (i.e. observational series of freeze and breakup dates of ice) are of great importance when assessing the environmental variations in cold regions. Here we employed the extraordinarily long ...Cryophenological records (i.e. observational series of freeze and breakup dates of ice) are of great importance when assessing the environmental variations in cold regions. Here we employed the extraordinarily long observational records of river ice breakup dates and air temperatures in northern Fennoscandia to examine their interrelations since 1802. Historical observations, along with modern data, comprise the informational setting for this analysis carried out using t-test. Temperature history of April-May season was used as cli- matic counterpart for the breakup timings. Both records (temperature and breakup) showed seven sub-periods during which their local means were distinctly different relative to preced- ing and subsequent sub-periods. The starting and ending years of these sub-periods oc- curred in temporal agreement. The main findings of this study are summarized as follows: (1) the synchrony between the temperature and river ice breakup records ruled out the possibility that the changes would have occurred due to quality of the historical series (i.e. inhomoge- neity problems often linked to historical time-series); (2) the studied records agreed to show lower spring temperatures and later river ice breakups during the 19th century, in comparison to the 20th century conditions, evidencing the prevalence of cooler spring temperatures in the study region, in agreement with the concept of the Little Ice Age (1570-1900) climate in North-West Europe; (3) the most recent sub-period demonstrate the highest spring tem- peratures with concomitantly earliest river ice breakups, showing the relative warmth of the current springtime climate in the study region in the context of the past two centuries; (4) the effects of anthropogenic changes in the river environment (e.g. construction and demolition of dams) during the 20th century should be considered for non-climatic variations in the breakup records; (5) this study emphasizes the importance of multi-centurial (i.e. historical) cryo- phenological information for highly interesting viewpoints of climate and environmental his- tory.展开更多
Past assessments report negative impacts of the climate crisis in boreal areas;but milder and shorter winters and elevated atmospheric CO_(2) may provide opportunities for agricultural productivity potentially playing...Past assessments report negative impacts of the climate crisis in boreal areas;but milder and shorter winters and elevated atmospheric CO_(2) may provide opportunities for agricultural productivity potentially playing a significant role in future food security.Arable cropping systems are expanding in boreal areas,but the regional mainstay will likely continue to be livestock production.Agroecological models can when appropriately calibrated and evaluated,facilitate improved productivity while minimising environmental impacts by identifying system interactions,and quantifying greenhouse gas emissions,soil carbon stocks and fertiliser use.While models designed for temperate and tropical zones abound,few are developed specifically for boreal zones,and there is uncertainty around the performance of existing models in boreal areas.We reviewed model performance across boreal environments and management systems.We identified a dearth of modelling studies in boreal regions,with the publication of three or less papers per year since the year 2000,constituting a significant research gap.Models IFSM and BASGRA_N performed best in grassland production,DNDC best in predicting soil N_(2)O and NH_(3) emissions.No model outperformed all others,strengthening the case for ensemble modelling.Existing agroecological models would be worthy of further evaluation,providing model improvements designed for boreal systems.展开更多
文摘A widely accepted standpoint contends that plant growth near the cold edge of the species range,such as treelines,does not depend on the annual temperature seasonality(i.e.difference between maximum and minimum temperature values) but rather on the warmth of summer season.In contrast to this expectation,we show that the growth of treeline Norway spruce(Picea abies) is well explained by temperature seasonality as a single climatic determinant.To do so,the tree-ring data of spruce trees growing on alpine treeline in Lapland was compared with long climate records.Biennial time-series of temperature seasonality capture both the decadal and abrupt growth fluctuations with a correlation coefficient of r = 0.601.We also show that the archetypal association between summer temperature and treeline tree growth may in fact be by far a more complex relationship than previously thought.Spruce growth appears responsive to lateJune(r = 0.494) and mid-July(r = 0.310) temperatures but unresponsive to temperatures during the early July,that is,during the grand period of the tracheid formation.Climatic warming may enhance the treeline spruce growth unless the warming is concentrated on unresponsive interval in the midst of the growing season.Water relations did not play significant role as agents of P.abies growth.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001058, 41001009, 40971119 and 40890052)the China Postdoctoral Science Foundation (Grant Nos. 201003194)
文摘The ring-width chronology of a Juniperus przewalskii tree from the middle of the Qilian Mountain was constructed to estimate the annual precipitation (from previous August to current July) since AD 1480.The reconstruction showed four major alternations of drying and wetting over the past 521 years.The rainy 16th century was followed by persistent drought in the 17th century.Moreover,relatively wet conditions persisted from the 18th to the beginning of 20th century until the recurrence of a drought during the 1920s and 1930s.Based on the Empirical Mode Decomposition method,eight Intrinsic Mode Functions (IMFs) were extracted,each representing unique fluctuations of the reconstructed precipitation in the time-frequency domain.The high amplitudes of IMFs on different timescales were often consistent with the high amount of precipitation,and vice versa.The IMF of the lowest frequency indicated that the precipitation has undergone a slow increasing trend over the past 521 years.The 2-3 year and 5-8 year time-scales reflected the characteristics of inter-annual variability in precipitation relevant to regional atmospheric circulation and the El Ni?o-Southern Oscillation (ENSO),respectively.The 10-13 year scale of IMF may be associated with changing solar activity.Specifically,an amalgamation of previous and present data showed that droughts were likely to be a historically persistent feature of the Earth's climate,whereas the probability of intensified rainfall events seemed to increase during the course of the 19th and 20th centuries.These changing characteristics in precipitation indicate an unprecedented alteration of the hydrological cycle,with unknown future amplitude.Our reconstruction complements existing information on past precipitation changes in the Qilian Mountain,and provides additional low-frequency information not previously available.
基金Academy of Finland,No.251441The Project of Ministry of Finance,No.GYHY200706005Kone Foundation(Finland)
文摘Cryophenological records (i.e. observational series of freeze and breakup dates of ice) are of great importance when assessing the environmental variations in cold regions. Here we employed the extraordinarily long observational records of river ice breakup dates and air temperatures in northern Fennoscandia to examine their interrelations since 1802. Historical observations, along with modern data, comprise the informational setting for this analysis carried out using t-test. Temperature history of April-May season was used as cli- matic counterpart for the breakup timings. Both records (temperature and breakup) showed seven sub-periods during which their local means were distinctly different relative to preced- ing and subsequent sub-periods. The starting and ending years of these sub-periods oc- curred in temporal agreement. The main findings of this study are summarized as follows: (1) the synchrony between the temperature and river ice breakup records ruled out the possibility that the changes would have occurred due to quality of the historical series (i.e. inhomoge- neity problems often linked to historical time-series); (2) the studied records agreed to show lower spring temperatures and later river ice breakups during the 19th century, in comparison to the 20th century conditions, evidencing the prevalence of cooler spring temperatures in the study region, in agreement with the concept of the Little Ice Age (1570-1900) climate in North-West Europe; (3) the most recent sub-period demonstrate the highest spring tem- peratures with concomitantly earliest river ice breakups, showing the relative warmth of the current springtime climate in the study region in the context of the past two centuries; (4) the effects of anthropogenic changes in the river environment (e.g. construction and demolition of dams) during the 20th century should be considered for non-climatic variations in the breakup records; (5) this study emphasizes the importance of multi-centurial (i.e. historical) cryo- phenological information for highly interesting viewpoints of climate and environmental his- tory.
基金supported by funding from the Ministry of Agriculture and Forestry Finland(Helsinki,FI)(Project:Clover for biogas,Project NC-GRASS:VN/28562/2020-MMM-2)the support from the Academy of Finland funded ENSINK project(Decision number 334422).
文摘Past assessments report negative impacts of the climate crisis in boreal areas;but milder and shorter winters and elevated atmospheric CO_(2) may provide opportunities for agricultural productivity potentially playing a significant role in future food security.Arable cropping systems are expanding in boreal areas,but the regional mainstay will likely continue to be livestock production.Agroecological models can when appropriately calibrated and evaluated,facilitate improved productivity while minimising environmental impacts by identifying system interactions,and quantifying greenhouse gas emissions,soil carbon stocks and fertiliser use.While models designed for temperate and tropical zones abound,few are developed specifically for boreal zones,and there is uncertainty around the performance of existing models in boreal areas.We reviewed model performance across boreal environments and management systems.We identified a dearth of modelling studies in boreal regions,with the publication of three or less papers per year since the year 2000,constituting a significant research gap.Models IFSM and BASGRA_N performed best in grassland production,DNDC best in predicting soil N_(2)O and NH_(3) emissions.No model outperformed all others,strengthening the case for ensemble modelling.Existing agroecological models would be worthy of further evaluation,providing model improvements designed for boreal systems.