We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STI...We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STID100 that released doxorubicin for 3 weeks in an orthotopic 4T1 breast cancer model in Balb/C mice. This implant starts as a thin doxorubicin-embedded PLGA membrane, and is then rolled into a cylinder containing an air gap between the membrane layers. Its controlled sustained release delivered 2× the amount of the intravenous (IV) equivalent of doxorubicin, inhibited the primary tumor, and prevented lung metastasis. Importantly it did not cause weight loss, splenomegaly, or cardiac toxicity vs systemically administrated doxorubicin. This favorable safety profile is further substantiated by the finding of no detectable plasma doxorubicin in multiple time points during the 3-week period, and low tumor doxorubicin concentration. The implant system delivered to the specification of an ideal pharmacological paradigm might offer a better coverage of the local tumor, significantly preventing metastatic spread with less drug toxicity to many vital organs, compared to the traditional pharmacology of IV route. The profile of STID made it an attractive therapeutic alternative in metastatic tumor prevention, pain management and many other diverse clinical scenarios.展开更多
Adoptive chimeric antigen receptor(CAR)-engineered natural killer(NK)cells have shown promise in treating various cancers.However,limited immunological memory and access to sufficient numbers of allogenic donor cells ...Adoptive chimeric antigen receptor(CAR)-engineered natural killer(NK)cells have shown promise in treating various cancers.However,limited immunological memory and access to sufficient numbers of allogenic donor cells have hindered their broader preclinical and clinical applications.Here,we first assess eight different CAR constructs that use an anti-PD-L1 nanobody and/or universal anti-fluorescein(FITC)single-chain variable fragment(scFv)to enhance antigen-specific proliferation and anti-tumor cytotoxicity of NK-92 cells against heterogenous solid tumors.We next genetically engineer human pluripotent stem cells(hPSCs)with optimized CARs and differentiate them into functional dual CAR-NK cells.The tumor microenvironment responsive anti-PD-L1 CAR effectively promoted hPSC-NK cell proliferation and cytotoxicity through antigen-dependent activation of phosphorylated STAT3(pSTAT3)and pSTAT5 signaling pathways via an intracellular truncated IL-2 receptorβ-chain(ΔIL-2Rβ)and STAT3-binding tyrosine-X-X-glutamine(YXXQ)motif.Anti-tumor activities of PD-L1-induced memory-like hPSC-NK cells were further boosted by administering a FITC-folate bi-specific adapter that bridges between a programmable anti-FITC CAR and folate receptor alpha-expressing breast tumor cells.Collectively,our hPSC CAR-NK engineering platform is modular and could constitute a realistic strategy to manufacture off-the-shelf CAR-NK cells with immunological memory-like phenotype for targeted immunotherapy.展开更多
文摘We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STID100 that released doxorubicin for 3 weeks in an orthotopic 4T1 breast cancer model in Balb/C mice. This implant starts as a thin doxorubicin-embedded PLGA membrane, and is then rolled into a cylinder containing an air gap between the membrane layers. Its controlled sustained release delivered 2× the amount of the intravenous (IV) equivalent of doxorubicin, inhibited the primary tumor, and prevented lung metastasis. Importantly it did not cause weight loss, splenomegaly, or cardiac toxicity vs systemically administrated doxorubicin. This favorable safety profile is further substantiated by the finding of no detectable plasma doxorubicin in multiple time points during the 3-week period, and low tumor doxorubicin concentration. The implant system delivered to the specification of an ideal pharmacological paradigm might offer a better coverage of the local tumor, significantly preventing metastatic spread with less drug toxicity to many vital organs, compared to the traditional pharmacology of IV route. The profile of STID made it an attractive therapeutic alternative in metastatic tumor prevention, pain management and many other diverse clinical scenarios.
基金supported by startup funding from the Davidson School of Chemical Engineering and the College of Engineering at Purdue(X.B.)PICR Robbers New Investigators(X.B.),Showalter Research Trust(Young Investigator Award to X.B.)+2 种基金NSF CBET(grant no.2143064 to X.B.)NSF CBET(grant no.1943696 to X.L.L.)NIH NCI(grant no.R37CA265926 to X.B.).
文摘Adoptive chimeric antigen receptor(CAR)-engineered natural killer(NK)cells have shown promise in treating various cancers.However,limited immunological memory and access to sufficient numbers of allogenic donor cells have hindered their broader preclinical and clinical applications.Here,we first assess eight different CAR constructs that use an anti-PD-L1 nanobody and/or universal anti-fluorescein(FITC)single-chain variable fragment(scFv)to enhance antigen-specific proliferation and anti-tumor cytotoxicity of NK-92 cells against heterogenous solid tumors.We next genetically engineer human pluripotent stem cells(hPSCs)with optimized CARs and differentiate them into functional dual CAR-NK cells.The tumor microenvironment responsive anti-PD-L1 CAR effectively promoted hPSC-NK cell proliferation and cytotoxicity through antigen-dependent activation of phosphorylated STAT3(pSTAT3)and pSTAT5 signaling pathways via an intracellular truncated IL-2 receptorβ-chain(ΔIL-2Rβ)and STAT3-binding tyrosine-X-X-glutamine(YXXQ)motif.Anti-tumor activities of PD-L1-induced memory-like hPSC-NK cells were further boosted by administering a FITC-folate bi-specific adapter that bridges between a programmable anti-FITC CAR and folate receptor alpha-expressing breast tumor cells.Collectively,our hPSC CAR-NK engineering platform is modular and could constitute a realistic strategy to manufacture off-the-shelf CAR-NK cells with immunological memory-like phenotype for targeted immunotherapy.