Silicon composite of nano-capsule type is newly applied as an active anode material for lithium ion batteries.TiO2-encapsulated silicon powders were synthesized by a sol-gel reaction with titanium ethoxide.Silicon nan...Silicon composite of nano-capsule type is newly applied as an active anode material for lithium ion batteries.TiO2-encapsulated silicon powders were synthesized by a sol-gel reaction with titanium ethoxide.Silicon nanoparticles were successfully embedded into porous titanium oxide capsules that played as a buffer layer against drastic volume changes of silicon during the charge-discharge cycling,consequently leading to the retardation of the capacity fading of intrinsic silicon materials.The electrochemical and structural properties of silicon nanocomposites with different surface areas of encapsulating TiO2 layer were characterized by X-ray diffraction(XRD),nitrogen gas adsorption analysis by the Brunauer-Emmett-Teller(BET) equation,transmission electron microscopy(TEM),and galvanostatic charge-discharge experiments.展开更多
文摘Silicon composite of nano-capsule type is newly applied as an active anode material for lithium ion batteries.TiO2-encapsulated silicon powders were synthesized by a sol-gel reaction with titanium ethoxide.Silicon nanoparticles were successfully embedded into porous titanium oxide capsules that played as a buffer layer against drastic volume changes of silicon during the charge-discharge cycling,consequently leading to the retardation of the capacity fading of intrinsic silicon materials.The electrochemical and structural properties of silicon nanocomposites with different surface areas of encapsulating TiO2 layer were characterized by X-ray diffraction(XRD),nitrogen gas adsorption analysis by the Brunauer-Emmett-Teller(BET) equation,transmission electron microscopy(TEM),and galvanostatic charge-discharge experiments.