期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamic PIV Measurement of a Compressible Flow Issuing from an Airbag Inflator Nozzle 被引量:1
1
作者 sangjoonlee YoungGilJang +1 位作者 SeokKim Chang Soo Kim 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第4期377-381,共5页
Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high... Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms. 展开更多
关键词 Airbag inflator PIV automobile.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部