A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow...A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow ground and/or unmanaged uplands is deteriorated. Flocculant polymer, commonly used in wastewater treatment facilities, but now exploited to improve control of sediment turbidity by promoting flocculation of particles in construction site. This study used the flocculant polymer to control the discharge of agricultural nonpoint source pollution and focused on the understanding of how soil-water and polymer properties affect flocculation performance. Therefore, a series of flocculation experiments under different conditions was evaluated for better polymer clarification efficiency. Various factors such as flocculant dose, end-over-end inversion of a cylinder, and soil-water properties (pH, NaCl, organic matter) were studied. The effective flocculant dose that fulfilled fast settling rate was 10mg·L-1. Additional findings included that 1) increasing pH decreased the settling rate of soil particle;2) a positive relationship between the percentage of turbidity reduction and a level of salinity in Kaolin suspension was observed, and 3) organic matter in soil solution inhibited PAM adsorption onto soil particles, which caused the reduction of flocculation performance. The findings of this study revealed that flocculant polymer possess good results as a turbidity reducetion measure and couldfurther provide valuable information to make better decision on establishment of Best Management Practice for handling agricultural nonpoint source pollution.展开更多
Smart farming solutions combine information,data software tools,and technology with the intent to improve agricultural production.While smart farming concepts are well described in the literature,the potential societa...Smart farming solutions combine information,data software tools,and technology with the intent to improve agricultural production.While smart farming concepts are well described in the literature,the potential societal impacts of smart farming are less conspicuous.To demonstrate how smart farming solutions could influence future agricultural production,agri-business and rural communities and their constituents,this article compares smart farming approaches and reasons behind the pursuit of smart farming solutions by the U.S.and South Korea.The article compares agricultural assets and productivity among the two countries as well as the technical and societal challenges impacting agricultural production as a basis to understanding the motivations behind and pathways for developing smart farming solutions.In doing so,the article compares some of the technological and social advantages and disadvantages of smart farming,dependending on the choice and implementation of smart farming solutions.The South Korean government has implemented a national policy to establish smart farming communities;a concept that addresses the entire agri-food supply chain.In the U.S.,a national plan to develop smart farming technologies does not exist.However,discrete smart farming solutions driven mainly by competition in the private sector have resulted in high-tech solutions that are advancing smart farming concepts.The differences in approaches and reporting of successes and failures between the two countries could facilitate the rate of evolution of successful smart farming solutions,and moreover,could provide pathways to facilitate sustainable development goals in developing countries where smart farming activities are currently underway.展开更多
Agricultural drainage ditches play an important role in removing surplus water;however, these can also potentially act as major conduits of agricultural nonpoint source pollutants, including sediment, nitrogen, and ph...Agricultural drainage ditches play an important role in removing surplus water;however, these can also potentially act as major conduits of agricultural nonpoint source pollutants, including sediment, nitrogen, and phosphorus. A supplementary hybrid system to limit such pollution was developed in this study;this consists of biodegradable fiber check dams, used in combination with a synthetic polymer (Polyacrylamide, PAM). An open channel experiment was conducted to optimize the design of the hybrid system, taking into account a variety of physical and hydraulic conditions. Subsequent field application of the hybrid system improved runoff water quality, such as 10.0% to 98.3% reduction for suspended solids, 25.2% to 98.4% reduction for turbidity, 21.1% to 91.1% increase for BOD, 19.2% to 75.4% increase for COD, 21.0% to 73.3% reduction for T-N, 5.9% to 91.2% reduction for T-P and 35.7% to 97.6% reduction for fecal coliforms. This clearly showed that this hybrid system could play a significant role in supplementing conventional best management practices.展开更多
文摘A multilateral effort into managing nonpoint source pollution from agriculture has gotten much attention for many years. Particularly during the heavy rain season, run-off of turbid water from sloped farmlands, fallow ground and/or unmanaged uplands is deteriorated. Flocculant polymer, commonly used in wastewater treatment facilities, but now exploited to improve control of sediment turbidity by promoting flocculation of particles in construction site. This study used the flocculant polymer to control the discharge of agricultural nonpoint source pollution and focused on the understanding of how soil-water and polymer properties affect flocculation performance. Therefore, a series of flocculation experiments under different conditions was evaluated for better polymer clarification efficiency. Various factors such as flocculant dose, end-over-end inversion of a cylinder, and soil-water properties (pH, NaCl, organic matter) were studied. The effective flocculant dose that fulfilled fast settling rate was 10mg·L-1. Additional findings included that 1) increasing pH decreased the settling rate of soil particle;2) a positive relationship between the percentage of turbidity reduction and a level of salinity in Kaolin suspension was observed, and 3) organic matter in soil solution inhibited PAM adsorption onto soil particles, which caused the reduction of flocculation performance. The findings of this study revealed that flocculant polymer possess good results as a turbidity reducetion measure and couldfurther provide valuable information to make better decision on establishment of Best Management Practice for handling agricultural nonpoint source pollution.
基金This work was funded in part by the ARS RDA Virtual Laboratory(RAVL)Program,Agreement No.58-0210-4-001-FProject"Application of wireless sensor network for crop growth monitoring and irrigation control".
文摘Smart farming solutions combine information,data software tools,and technology with the intent to improve agricultural production.While smart farming concepts are well described in the literature,the potential societal impacts of smart farming are less conspicuous.To demonstrate how smart farming solutions could influence future agricultural production,agri-business and rural communities and their constituents,this article compares smart farming approaches and reasons behind the pursuit of smart farming solutions by the U.S.and South Korea.The article compares agricultural assets and productivity among the two countries as well as the technical and societal challenges impacting agricultural production as a basis to understanding the motivations behind and pathways for developing smart farming solutions.In doing so,the article compares some of the technological and social advantages and disadvantages of smart farming,dependending on the choice and implementation of smart farming solutions.The South Korean government has implemented a national policy to establish smart farming communities;a concept that addresses the entire agri-food supply chain.In the U.S.,a national plan to develop smart farming technologies does not exist.However,discrete smart farming solutions driven mainly by competition in the private sector have resulted in high-tech solutions that are advancing smart farming concepts.The differences in approaches and reporting of successes and failures between the two countries could facilitate the rate of evolution of successful smart farming solutions,and moreover,could provide pathways to facilitate sustainable development goals in developing countries where smart farming activities are currently underway.
文摘Agricultural drainage ditches play an important role in removing surplus water;however, these can also potentially act as major conduits of agricultural nonpoint source pollutants, including sediment, nitrogen, and phosphorus. A supplementary hybrid system to limit such pollution was developed in this study;this consists of biodegradable fiber check dams, used in combination with a synthetic polymer (Polyacrylamide, PAM). An open channel experiment was conducted to optimize the design of the hybrid system, taking into account a variety of physical and hydraulic conditions. Subsequent field application of the hybrid system improved runoff water quality, such as 10.0% to 98.3% reduction for suspended solids, 25.2% to 98.4% reduction for turbidity, 21.1% to 91.1% increase for BOD, 19.2% to 75.4% increase for COD, 21.0% to 73.3% reduction for T-N, 5.9% to 91.2% reduction for T-P and 35.7% to 97.6% reduction for fecal coliforms. This clearly showed that this hybrid system could play a significant role in supplementing conventional best management practices.