This paper proposes an adaptive integral higher order sliding mode (HOSM) controller for uncertain sys- tems. Instead of a regular control input, the derivative of the control input is used in the proposed control l...This paper proposes an adaptive integral higher order sliding mode (HOSM) controller for uncertain sys- tems. Instead of a regular control input, the derivative of the control input is used in the proposed control law. The discon- tinuous sign function in the controller is made to act on the time derivative of the control input. The actual control signal obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used in the proposed controller eliminates the need of prior knowledge about the upper bound of the system uncertainties. Stability and robustness of the proposed controller are proved by using the classical Lyapunov criterion. Simulation results demonstrate the advantages of the proposed control scheme.展开更多
In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified tr...In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented, Simulation results validate the effectiveness of the proposed control law.展开更多
文摘This paper proposes an adaptive integral higher order sliding mode (HOSM) controller for uncertain sys- tems. Instead of a regular control input, the derivative of the control input is used in the proposed control law. The discon- tinuous sign function in the controller is made to act on the time derivative of the control input. The actual control signal obtained by integrating the derivative control signal is smooth and chattering free. The adaptive tuning law used in the proposed controller eliminates the need of prior knowledge about the upper bound of the system uncertainties. Stability and robustness of the proposed controller are proved by using the classical Lyapunov criterion. Simulation results demonstrate the advantages of the proposed control scheme.
文摘In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface. System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by step design method using the full order sliding surface for mismatched nonlinear systems is presented, Simulation results validate the effectiveness of the proposed control law.