Metal–oxide–semiconductor field-effect transistor(MOSFET)faces the major problem of being unable to achieve a subthreshold swing(SS)below 60 mV/dec.As device dimensions continue to reduce and the demand for high swi...Metal–oxide–semiconductor field-effect transistor(MOSFET)faces the major problem of being unable to achieve a subthreshold swing(SS)below 60 mV/dec.As device dimensions continue to reduce and the demand for high switching ratios for low power consumption increases,the tunnel field-effect transistor(TFET)appears to be a viable device,displaying promising characteristic as an answer to the shortcomings of the traditional MOSFET.So far,TFET designing has been a task of sacrificing higher ON state current for low subthreshold swing(and vice versa),and a device that displays both while maintaining structural integrity and operational stability lies in the nascent stages of popular research.This work presents a comprehensive analysis of a heterojunction plasma doped gate-all-around TFET(HPD-GAA-TFET)by making a comparison between Mg_(2)Si and Si which serve as source materials.Charge plasma technique is employed to implement doping in an intrinsic silicon wafer with the help of suitable electrodes.A low-energy bandgap material,i.e.magnesium silicide is incorporated as source material to form a heterojunction between source and silicon-based channel.A rigorous comparison of performance between Si-based GAA-TFET and HPD-GAA-TFET is conducted in terms of electrical,radio frequency(RF),linearity,and distortion parameters.It is observable that HPD-GAA-TFET outperforms conventional Si-based GAA-TFET with an ON-state current(I_(ON)),subthreshold swing(SS),threshold voltage(V_(th)),and current switching ratio being 0.377 mA,12.660 mV/dec,0.214 V,and 2.985×10^(12),respectively.Moreover,HPD-GAA-TFET holds faster switching and is more reliable than Si-based device.Therefore,HPD-GAA-TFET is suitable for low-power applications.展开更多
文摘Metal–oxide–semiconductor field-effect transistor(MOSFET)faces the major problem of being unable to achieve a subthreshold swing(SS)below 60 mV/dec.As device dimensions continue to reduce and the demand for high switching ratios for low power consumption increases,the tunnel field-effect transistor(TFET)appears to be a viable device,displaying promising characteristic as an answer to the shortcomings of the traditional MOSFET.So far,TFET designing has been a task of sacrificing higher ON state current for low subthreshold swing(and vice versa),and a device that displays both while maintaining structural integrity and operational stability lies in the nascent stages of popular research.This work presents a comprehensive analysis of a heterojunction plasma doped gate-all-around TFET(HPD-GAA-TFET)by making a comparison between Mg_(2)Si and Si which serve as source materials.Charge plasma technique is employed to implement doping in an intrinsic silicon wafer with the help of suitable electrodes.A low-energy bandgap material,i.e.magnesium silicide is incorporated as source material to form a heterojunction between source and silicon-based channel.A rigorous comparison of performance between Si-based GAA-TFET and HPD-GAA-TFET is conducted in terms of electrical,radio frequency(RF),linearity,and distortion parameters.It is observable that HPD-GAA-TFET outperforms conventional Si-based GAA-TFET with an ON-state current(I_(ON)),subthreshold swing(SS),threshold voltage(V_(th)),and current switching ratio being 0.377 mA,12.660 mV/dec,0.214 V,and 2.985×10^(12),respectively.Moreover,HPD-GAA-TFET holds faster switching and is more reliable than Si-based device.Therefore,HPD-GAA-TFET is suitable for low-power applications.