期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Sequential Model for Anchor Recommendation on Live Streaming Platforms 被引量:6
1
作者 Shuai Zhang Hongyan Liu +2 位作者 Jun He sanpu han Xiaoyong Du 《Big Data Mining and Analytics》 EI 2021年第3期173-182,共10页
Live streaming has grown rapidly in recent years, attracting increasingly more participation. As the number of online anchors is large, it is difficult for viewers to find the anchors they are interested in. Therefore... Live streaming has grown rapidly in recent years, attracting increasingly more participation. As the number of online anchors is large, it is difficult for viewers to find the anchors they are interested in. Therefore, a personalized recommendation system is important for live streaming platforms. On live streaming platforms, the viewer’s and anchor’s preferences are dynamically changing over time. How to capture the user’s preference change is extensively studied in the literature, but how to model the viewer’s and anchor’s preference changes and how to learn their representations based on their preference matching are less studied. Taking these issues into consideration, in this paper, we propose a deep sequential model for live streaming recommendation. We develop a component named the multi-head related-unit in the model to capture the preference matching between anchor and viewer and extract related features for their representations. To evaluate the performance of our proposed model, we conduct experiments on real datasets, and the results show that our proposed model outperforms state-of-the-art recommendation models. 展开更多
关键词 live streaming sequential recommendation attention mechanism deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部