期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Neural Networks on an FPGA and Hardware-Friendly Activation Functions
1
作者 Jiong Si sarah l. harris Evangelos Yfantis 《Journal of Computer and Communications》 2020年第12期251-277,共27页
This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Te... This paper describes our implementation of several neural networks built on a field programmable gate array (FPGA) and used to recognize a handwritten digit dataset—the Modified National Institute of Standards and Technology (MNIST) database. We also propose a novel hardware-friendly activation function called the dynamic Rectifid Linear Unit (ReLU)—D-ReLU function that achieves higher performance than traditional activation functions at no cost to accuracy. We built a 2-layer online training multilayer perceptron (MLP) neural network on an FPGA with varying data width. Reducing the data width from 8 to 4 bits only reduces prediction accuracy by 11%, but the FPGA area decreases by 41%. Compared to networks that use the sigmoid functions, our proposed D-ReLU function uses 24% - 41% less area with no loss to prediction accuracy. Further reducing the data width of the 3-layer networks from 8 to 4 bits, the prediction accuracies only decrease by 3% - 5%, with area being reduced by 9% - 28%. Moreover, FPGA solutions have 29 times faster execution time, even despite running at a 60× lower clock rate. Thus, FPGA implementations of neural networks offer a high-performance, low power alternative to traditional software methods, and our novel D-ReLU activation function offers additional improvements to performance and power saving. 展开更多
关键词 Deep Learning D-ReLU Dynamic ReLU FPGA Hardware Acceleration Activation Function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部