The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the dry...The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the drying process by thermal energy from biomass fuel combustion to reduce the investment cost. A drying chamber was made from four concrete walls in the rectangular volume of 4.7 × 4.7 × 2.5 m3 for drying tuna fishes that sliced to small pieces of around 2,680 kg fresh tuna. The hot air tube in the combustor was used for driving hot air to dry fishes in the drying chamber. Heat from acacia wood burning in the combustor with the consumption rate of 50.1 kg/h was transferred by the hot air. The design result was calculated for thermal energy and the efficiency of around 200 kW, and 32%, respectively in the case of 0.62 m3/s hot air flow rate that circulation between the combustor and the drying chamber. The experimental result shows that the moister content of 78.9%wb was decreased to around 13.8%wb in 5 days without petroleum fuel. The drying temperature was controlled at 70℃ continuously for reducing hard containing, and the closed loop tube design for the less of BaP (benzo (a) pyrene) from combustion smoking of the drying industrial process.展开更多
文摘The industrial biomass combustor of Halla food factory in Thailand was designed for drying tuna fish product. The purpose of this paper needed to present the design of a factory combustor for producing heat in the drying process by thermal energy from biomass fuel combustion to reduce the investment cost. A drying chamber was made from four concrete walls in the rectangular volume of 4.7 × 4.7 × 2.5 m3 for drying tuna fishes that sliced to small pieces of around 2,680 kg fresh tuna. The hot air tube in the combustor was used for driving hot air to dry fishes in the drying chamber. Heat from acacia wood burning in the combustor with the consumption rate of 50.1 kg/h was transferred by the hot air. The design result was calculated for thermal energy and the efficiency of around 200 kW, and 32%, respectively in the case of 0.62 m3/s hot air flow rate that circulation between the combustor and the drying chamber. The experimental result shows that the moister content of 78.9%wb was decreased to around 13.8%wb in 5 days without petroleum fuel. The drying temperature was controlled at 70℃ continuously for reducing hard containing, and the closed loop tube design for the less of BaP (benzo (a) pyrene) from combustion smoking of the drying industrial process.