Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental ...Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).展开更多
In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlin...In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.展开更多
文摘Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).
文摘In this paper,we have numerically examined the steady boundary layer of a viscous incompressible nanofluid and its heat and mass transfers above a horizontal flat sheet.The boundary conditions considered were a nonlinear magnetic field,a nonlinear velocity and convection.Such nonlinearity in hydrodynamic and heat transfer boundary conditions and also in the magnetic field has not been addressed with the great details in the literature.In this investigation,both the Brownian motion and thermophoretic diffusion have been considered.A similarity solution is achieved and the resulting ordinary differential equations (nonlinear) are worked numerically out.Upon validation,the following hydrodynamic and heat and mass transfers parameters were found:the reduced Sherwood and Nusselt numbers,the reduced skin friction coefficient,and the temperature and nanoparticle volume fraction profiles.All these parameters are found affected by the Lewis,Biot and Prandtl numbers,the stretching,thermophoretic diffusion,Brownian motion and magnetic parameters.The detailed trends observed in this paper are carefully analyzed to provide useful design suggestions.