Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This pape...Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This paper presents a two-steps hybrid probabilistic anomaly detection model in the smart home.First,it employs various algorithms with different characteristics to detect anomalies from sensory data.Then,it aggregates their results using a Bayesian network.In this Bayesian network,abnormal events are detected through calculating the probability of abnormality given anomaly detection results of base methods.Experimental evaluation of a real dataset indicates the effectiveness of the proposed method by reducing false positives and increasing true positives.展开更多
文摘Anomaly detection in smart homes provides support to enhance the health and safety of people who live alone.Compared to the previous studies done on this topic,less attention has been given to hybrid methods.This paper presents a two-steps hybrid probabilistic anomaly detection model in the smart home.First,it employs various algorithms with different characteristics to detect anomalies from sensory data.Then,it aggregates their results using a Bayesian network.In this Bayesian network,abnormal events are detected through calculating the probability of abnormality given anomaly detection results of base methods.Experimental evaluation of a real dataset indicates the effectiveness of the proposed method by reducing false positives and increasing true positives.