期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Novel Adaptive Neural Network Compensator as Applied to Position Control of a Pneumatic System 被引量:1
1
作者 Behrad Dehghan sasan taghizadeh +1 位作者 Brian Surgenor Mohammed Abu-Mallouh 《Intelligent Control and Automation》 2011年第4期388-395,共8页
Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used.... Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used. But the more successful advanced strategies typically need a mathematical model of the system to be controlled. The advantage of neural networks is that they do not require a model. This paper reports on a study whose objective is to explore the potential of a novel adaptive on-line neural network compensator (ANNC) for the position control of a pneumatic gantry robot. It was found that by combining ANNC with a traditional PID controller, tracking performance could be improved on the order of 45% to 70%. This level of performance was achieved after careful tuning of both the ANNC and PID components. The paper sets out to document the ANNC algorithm, the adopted tuning procedure, and presents experimental results that illustrate the adaptive nature of NN and confirms the performance achievable with ANNC. A major contribution is demonstration that tuning of ANNC requires no more effort than the tuning of PID. 展开更多
关键词 GANTRY ROBOT Servopneumatics NEURAL Networks Adaptive CONTROL PID CONTROL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部