MicroRNAs have emerged as one of the major classes of non-coding RNAs. Recent reports have placed them in high abundance in the nervous system, having key roles in development. Neurological disorders such as Parkinson...MicroRNAs have emerged as one of the major classes of non-coding RNAs. Recent reports have placed them in high abundance in the nervous system, having key roles in development. Neurological disorders such as Parkinson’s disease, Alzheimer’s disease as well as Huntington disease have also been studied and several microRNAs associated with diseases pathogenesis have been identified. Various such findings indicate differential expression levels of many of these microRNAs. Such changes in the expression levels not only indicate towards a control of the biogenesis of these microRNAs but also indicate towards critical yet unelucidated roles of regulatory proteins, which probably act in concert to control the production or maturation of these molecules. In this work, a collection of overrepresented regulatory motif signatures were identified in the DNA and RNA sequences of the precursor microRNAs. The identification of such regulatory sequence signatures promises to provide new insights into many facets of microRNA regulation and neurological disorders.展开更多
文摘MicroRNAs have emerged as one of the major classes of non-coding RNAs. Recent reports have placed them in high abundance in the nervous system, having key roles in development. Neurological disorders such as Parkinson’s disease, Alzheimer’s disease as well as Huntington disease have also been studied and several microRNAs associated with diseases pathogenesis have been identified. Various such findings indicate differential expression levels of many of these microRNAs. Such changes in the expression levels not only indicate towards a control of the biogenesis of these microRNAs but also indicate towards critical yet unelucidated roles of regulatory proteins, which probably act in concert to control the production or maturation of these molecules. In this work, a collection of overrepresented regulatory motif signatures were identified in the DNA and RNA sequences of the precursor microRNAs. The identification of such regulatory sequence signatures promises to provide new insights into many facets of microRNA regulation and neurological disorders.