In this paper, the issue of control of impact forces generated during the interaction between the hopping ro-bot toe and the ground while landing has been considered. The force thus generated can damage the robot alto...In this paper, the issue of control of impact forces generated during the interaction between the hopping ro-bot toe and the ground while landing has been considered. The force thus generated can damage the robot altogether. With the objective to control these impact forces, impedance control strategy has been applied to the hopping robot system. The dynamics pertaining to the impact between robot toe and ground has been modeled as in case of a ball bouncing on the ground. Bond Graph theory has been used for the modeling of the hopping robot system. Simulation results show that impact forces generated during the landing has been controlled to a specified limiting value. This model and the corresponding analysis can be further extended for understanding the dynamics involved in continuous hopping of robot with constant height and velocity control.展开更多
文摘In this paper, the issue of control of impact forces generated during the interaction between the hopping ro-bot toe and the ground while landing has been considered. The force thus generated can damage the robot altogether. With the objective to control these impact forces, impedance control strategy has been applied to the hopping robot system. The dynamics pertaining to the impact between robot toe and ground has been modeled as in case of a ball bouncing on the ground. Bond Graph theory has been used for the modeling of the hopping robot system. Simulation results show that impact forces generated during the landing has been controlled to a specified limiting value. This model and the corresponding analysis can be further extended for understanding the dynamics involved in continuous hopping of robot with constant height and velocity control.