This study was designed to evaluate the neuroprotective effects of Morinda citrifofia L. (Rubiaceae) commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurod...This study was designed to evaluate the neuroprotective effects of Morinda citrifofia L. (Rubiaceae) commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurodegenerative disorders. Kaolin was injected into the cistern magna of male adult New Zealand rabbits to establish a hydrocephalus animal model. Memantine (20 mg/kg, intraperitoneally; memantine-treated group) or noni (5 mL/kg, intragastrically; noni-treated group) was administered daily for 2 weeks. Microtubule-associated protein-2 and caspase-3 immunohistochemistry were performed to detect neuronal degeneration and apoptosis in the periventricular tissue of the fourth ventricle of rabbits. Microtubule-associated protein-2 staining density was significantly decreased in the hydrocephalic group, while the staining density was significantly increased in the memantine- and noni-treated groups, especially in the noni-treated group. Noni treatment decreased the number of caspase-3-positive cells in rabbits with hydrocephalus, while memantine had no effect. These findings suggest that noni exhibits more obvious inhibitory effects on hydrocephalus-induced neurodegenerative disorders than memantine in periventricular tissue of the fourth ventricle.展开更多
基金sponsored by a grant from the Education and Research Foundation of Faculty of Medicine,Kocaeli University,No.2009/45
文摘This study was designed to evaluate the neuroprotective effects of Morinda citrifofia L. (Rubiaceae) commonly known as noni, and memantine (a N-methy-D-aspartate receptor inhibitor) on hydrocephalus-induced neurodegenerative disorders. Kaolin was injected into the cistern magna of male adult New Zealand rabbits to establish a hydrocephalus animal model. Memantine (20 mg/kg, intraperitoneally; memantine-treated group) or noni (5 mL/kg, intragastrically; noni-treated group) was administered daily for 2 weeks. Microtubule-associated protein-2 and caspase-3 immunohistochemistry were performed to detect neuronal degeneration and apoptosis in the periventricular tissue of the fourth ventricle of rabbits. Microtubule-associated protein-2 staining density was significantly decreased in the hydrocephalic group, while the staining density was significantly increased in the memantine- and noni-treated groups, especially in the noni-treated group. Noni treatment decreased the number of caspase-3-positive cells in rabbits with hydrocephalus, while memantine had no effect. These findings suggest that noni exhibits more obvious inhibitory effects on hydrocephalus-induced neurodegenerative disorders than memantine in periventricular tissue of the fourth ventricle.