The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the...The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.展开更多
Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective co...Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective contribution in a given meteorological situation is lacking. Here we suggest and analyze a hitherto little discussed process. A qualitative picture at the molecular level of the charge separation mechanism of lightning in a thundercloud is proposed. It is based on two key physical/chemical natural phenomena, namely, internal charge separation of the atmospheric impurities/aerosols inside an atmospheric water cluster/droplet/ice particle and the existence of liquid water layers on rimers (graupels and hailstones) forming a layer of dipoles with H<sup>+</sup> pointing out from the air-water interface. Charge separation is achieved through strong collisions among ice particles and water droplets with the rimers in the turbulence of the thundercloud. This work would have significant contribution to cloud electrification and lightning formation.展开更多
Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond...Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond laser filamentation in gases is damage-immune for supercontinuum generation.A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level.We demonstrated stable kHz supercontinuum generation directly in air with multiple mJ level pulse energy.This was achieved by applying an external DC electric field to the air plasma filament.Beam pointing jitters of the 1 kHz air filament induced SC light were reduced by more than 2 fold.The stabilized high repetition rate laser filament offers the opportunity for stable intense SC generation and its applications in air.展开更多
Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform inten...Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3-- are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3--. These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.展开更多
We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona disch...We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.展开更多
Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New resul...Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New results are presented on the direct relationship between THz generation in a two color filament and induced N2 fluorescence through population trapping during molecular alignment and revival in air. This further supports the new technique of remote THz detection in air through the sensitive measurement of N2 fluorescence.展开更多
In this paper we report a recent study on the beam self-cleaning behavior occurred during the ultrashort laser pulse filamentation process. The propagation of a Gaussian beam with distorted beam profile is numerically...In this paper we report a recent study on the beam self-cleaning behavior occurred during the ultrashort laser pulse filamentation process. The propagation of a Gaussian beam with distorted beam profile is numerically simulated based on the nonlinear wave equation. Our results demonstrate that when the power is not too high so that multiple filaments are not yet induced, the intensity perturbation con-tained in the initial beam profile could be treated as high order spatial modes su-perpositioning on a fundamental mode. Then the self-focusing of the laser beam acts as a spatial filter. It focuses the fundamental mode toward the propagation axis, and produces a fundamental mode profile at the self-focus. While the strong diffraction of higher order modes could not be counteracted by the self-focusing. Therefore their propagation is mainly governed by the divergence without de-stroying the high profile quality at the self-focal region. These lead to the observa-tion of beam profile self-cleaning behavior.展开更多
文摘The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.
文摘Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective contribution in a given meteorological situation is lacking. Here we suggest and analyze a hitherto little discussed process. A qualitative picture at the molecular level of the charge separation mechanism of lightning in a thundercloud is proposed. It is based on two key physical/chemical natural phenomena, namely, internal charge separation of the atmospheric impurities/aerosols inside an atmospheric water cluster/droplet/ice particle and the existence of liquid water layers on rimers (graupels and hailstones) forming a layer of dipoles with H<sup>+</sup> pointing out from the air-water interface. Charge separation is achieved through strong collisions among ice particles and water droplets with the rimers in the turbulence of the thundercloud. This work would have significant contribution to cloud electrification and lightning formation.
基金This work was supported in part by NSAF(Grant No.U2130123)the International Partnership Program of Chinese Academy of Sciences(Grant Nos.181231KYSB20200033 and 181231KYSB20200040)Shanghai Science and Technology Program(Grant No.21511105000).S.L.C.acknowledges the support of COPL,Laval University,Quebec City,Canada.We thank Dr.Hao Guo,Ms.Na Chen,Mr.Xuan Zhang,Dr.Haiyi Sun from SIOM for help in the experiments and Prof.Howard M.Milchberg from the University of Maryland for the fruitful discussions and his reading of the manuscript.
文摘Supercontinuum(SC)light source has advanced ultrafast laser spectroscopy in condensed matter science,biology,physics,and chemistry.Compared to the frequently used photonic crystal fibers and bulk materials,femtosecond laser filamentation in gases is damage-immune for supercontinuum generation.A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level.We demonstrated stable kHz supercontinuum generation directly in air with multiple mJ level pulse energy.This was achieved by applying an external DC electric field to the air plasma filament.Beam pointing jitters of the 1 kHz air filament induced SC light were reduced by more than 2 fold.The stabilized high repetition rate laser filament offers the opportunity for stable intense SC generation and its applications in air.
基金supported by the National Natural Science Foundation of China(Nos.11425418,61475167,11404354,and 61221064)the State Key Laboratory Program of the Chinese Ministry of Science and Technology
文摘Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber.The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3-- are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3--. These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.
基金supported in part by National Natural Science Foundation of China (Nos 61221064,11127901 and 11404354)the National 973 Project of China (No.2011CB808103)+2 种基金the Chinese Academy of Sciences and the State Key Laboratory of High Field Laser Physicsthe 100 Talents Program of Chinese Academy of Sciencesthe Shanghai Pujiang Program
文摘We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.
基金supported in part by NSERC,Canada Research Chair,the Canada Foundation for Innovation,the Canadian Institute for Photonics Innovation,and leFonds Québécois pour la Recherche sur la Nature et les Technologies
文摘Broadband and energetic terahertz (THz) pulses can be remotely generated in air through filamentation. We review such THz generation and detection in femtosecond Ti-sapphire laser induced remote filaments. New results are presented on the direct relationship between THz generation in a two color filament and induced N2 fluorescence through population trapping during molecular alignment and revival in air. This further supports the new technique of remote THz detection in air through the sensitive measurement of N2 fluorescence.
基金Supported by the National Natural Science Foundation of China (Grant No. 60637020)
文摘In this paper we report a recent study on the beam self-cleaning behavior occurred during the ultrashort laser pulse filamentation process. The propagation of a Gaussian beam with distorted beam profile is numerically simulated based on the nonlinear wave equation. Our results demonstrate that when the power is not too high so that multiple filaments are not yet induced, the intensity perturbation con-tained in the initial beam profile could be treated as high order spatial modes su-perpositioning on a fundamental mode. Then the self-focusing of the laser beam acts as a spatial filter. It focuses the fundamental mode toward the propagation axis, and produces a fundamental mode profile at the self-focus. While the strong diffraction of higher order modes could not be counteracted by the self-focusing. Therefore their propagation is mainly governed by the divergence without de-stroying the high profile quality at the self-focal region. These lead to the observa-tion of beam profile self-cleaning behavior.