The associative properties of methoxy (CH3O-) ended E58B11 and hydroxyl (-OH) ended E56B19 oxyethylene-oxybuty- lene diblock copolymers in aqueous solution at different temperature are reported in this paper. For both...The associative properties of methoxy (CH3O-) ended E58B11 and hydroxyl (-OH) ended E56B19 oxyethylene-oxybuty- lene diblock copolymers in aqueous solution at different temperature are reported in this paper. For both copolymers, E represents an oxyethylene (-[CH2CH2O]-) unit and B an oxybutylene (-[CH(C2H5)CH2O]-) unit while the subscripts denote the number average block length. Surface tension measurements were used to find out surface excess concentrations (Γm), area per molecule (αs1 ) at air/water interface and Gibbs free energy for adsorption (△G0ads ) for the pre-micellar region at four temperatures. Likewise thermodynamic parameters of micellization such as, critical micelle concentrations (CMC), enthalpy of micellization (△H0mic ), standard free energy of micellization (△G0mic) and entropy of micellization (△S0mic ), were also obtained using surface tension measurements. Solution densities were used to deter-mine the partial specific volume of micelle ( Vmic) and micellar density (ρmic). Dilute solution viscosities have been used to estimate the intrinsic viscosities [η], solute-solvent interaction parameter (KH) and hydration value of micelle (Wh) at various temperatures. The effect of temperature on the micelle properties is also discussed.展开更多
文摘The associative properties of methoxy (CH3O-) ended E58B11 and hydroxyl (-OH) ended E56B19 oxyethylene-oxybuty- lene diblock copolymers in aqueous solution at different temperature are reported in this paper. For both copolymers, E represents an oxyethylene (-[CH2CH2O]-) unit and B an oxybutylene (-[CH(C2H5)CH2O]-) unit while the subscripts denote the number average block length. Surface tension measurements were used to find out surface excess concentrations (Γm), area per molecule (αs1 ) at air/water interface and Gibbs free energy for adsorption (△G0ads ) for the pre-micellar region at four temperatures. Likewise thermodynamic parameters of micellization such as, critical micelle concentrations (CMC), enthalpy of micellization (△H0mic ), standard free energy of micellization (△G0mic) and entropy of micellization (△S0mic ), were also obtained using surface tension measurements. Solution densities were used to deter-mine the partial specific volume of micelle ( Vmic) and micellar density (ρmic). Dilute solution viscosities have been used to estimate the intrinsic viscosities [η], solute-solvent interaction parameter (KH) and hydration value of micelle (Wh) at various temperatures. The effect of temperature on the micelle properties is also discussed.