期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
AC Back Surface Recombination Velocity as Applied to Optimize the Base Thickness under Temperature of an (n+-p-p+) Bifacial Silicon Solar Cell, Back Illuminated by a Light with Long Wavelength
1
作者 Khady Loum Ousmane Sow +7 位作者 Gora Diop Richard Mane Ibrahima Diatta Malick Ndiaye sega gueye Moustapha Thiame Mamadou Wade Gregoire Sissoko 《World Journal of Condensed Matter Physics》 CAS 2023年第1期40-56,共17页
The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to ... The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si). 展开更多
关键词 Bifacial Silicon Solar Cell Absorption Coefficient Frequency TEMPERATURE Recombination Velocity Optimum Thickness
下载PDF
Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell 被引量:2
2
作者 Meimouna Mint Sidi Dede Mamadou Lamine Ba +7 位作者 Mamour Amadou Ba Mor Ndiaye sega gueye El Hadj Sow Ibrahima Diatta Masse Samba Diop Mamadou Wade Gregoire Sissoko 《Energy and Power Engineering》 2020年第7期445-458,共14页
The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurren... The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurrent. The absorption-generation-diffusion and recombination (bulk and surface) phenomena are taken into account in the excess minority carrier continuity equation. The solution of this equation gives the photocurrent according to ab</span><span style="font-family:Verdana;">sorption and electronic parameters. Then from the obtained short circuit</span><span style="font-family:Verdana;"> photocurrent expression, excess minority carrier back surface recombination velocity is determined, function of the monochromatic absorption coefficient at a given wavelength. This latter plotted versus base thickness yields the optimum thickness of an n</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-p-p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> solar cell, for each wavelength, which is in the range close to the energy band gap of the silicon material. This study provides a tool for improvement solar cell manufacture processes, through the mathematical relationship obtained from the thickness limit according to the absorption coefficient that allows base width optimization. 展开更多
关键词 Silicon Solar Cell Absorption Coefficient Back Surface Recombination Optimum Thickness
下载PDF
A.C. Recombination Velocity as Applied to Determine n<sup>+</sup>/p/p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness 被引量:1
3
作者 Amadou Mar Ndiaye sega gueye +6 位作者 Ousmane Sow Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Energy and Power Engineering》 2020年第10期543-554,共12页
This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuit... This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases. 展开更多
关键词 Silicon Solar Cell Modulation Frequency Recombination Velocity Base Thickness WAVELENGTH
下载PDF
Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination 被引量:1
4
作者 Amadou Mar Ndiaye sega gueye +6 位作者 Mame Faty Mbaye Fall Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第10期145-158,共14页
The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial developm... The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use. 展开更多
关键词 Silicon Solar Cell Resonance Frequency Magnetic Field Recombination Velocity Base Thickness
下载PDF
Solar Controller with Automatic Search Technology for the Maximum Power Point with Autonomy Display
5
作者 Mamadou Sall Ousmane Sow +4 位作者 sega gueye Gora Diop Lemrabott Habiboullah Mamadou Wade Gregoire Sissoko 《Energy and Power Engineering》 CAS 2022年第9期509-522,共14页
In our work, we have been interested in conducting technological research on the use of photovoltaic energy for lighting. In fact, we have produced a stand-alone photovoltaic system with automatic search for the maxim... In our work, we have been interested in conducting technological research on the use of photovoltaic energy for lighting. In fact, we have produced a stand-alone photovoltaic system with automatic search for the maximum power point, consisting of a photovoltaic module, a solar regulator, a storage battery and a digital control by microcontroller. The solar field is connected to the input of the regulator and the battery to its output. When the battery voltage is lower than the regulation voltage, the controller operates the photovoltaic generator at maximum power Pmpp and transfers this power to the output. In addition to the protection function, this regulator ensures tracking of the maximum power point (MPPT) and allows the photovoltaic generator to deliver its power whatever the variation of climatic conditions (sunshine and temperature). The main role of the solar regulator is the continuous monitoring of the state of charge of the battery to ensure its protection against overcharging and excessive discharging, the coupling and decoupling of the user as well as its maintenance. The principle of operation is based on controlling a DC-DC converter by a rectangular “PWM” signal generated by a PIC16F874 microcontroller which also controls the entire system. The results of simulation after realization were presented to illustrate the operation of the regulator by curves. 展开更多
关键词 Index Terms-Battery Charge/Discharge REGULATOR PIC16FC874
下载PDF
Diffusion Coefficient at Double Resonances in Frequency and Temperature, Applied to (n+/p/p+) Silicon Solar Cell Base Thickness Optimization under Long Wavelength Illumination
6
作者 Gora Diop Ousmane Sow +6 位作者 Moustapha Thiame Richard Mane Ibrahima Diatta Khady Loum sega gueye Mamadou Wade Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 CAS 2022年第8期89-103,共15页
The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (T<sub>opt</sub>). For... The diffusion coefficient of the minority charge carriers in the base of a silicon solar cell under temperature and subjected to a magnetic field, passes in reso-nance at temperature (T<sub>opt</sub>). For this same magnetic field, the diffusion coeffi-cient of the photogenerated carriers by a monochromatic light in frequency modulation enters into resonance, at the frequency (ω<sub>c</sub>). Under this double resonance in temperature and frequency, the diffusion coefficient is used in the expression of the recombination velocity of the minority charge carriers on the back side of the base of the solar cell (n<sup>+</sup>/p/p<sup>+</sup>), to obtain, by a graphical method, the optimum thickness. A modeling of the results obtained shows a material saving (Si), in the development of the solar cell. 展开更多
关键词 Silicon Solar Cell-Diffusion Coefficient Recombination Velocity Absorption Coefficient Magnetic Field-Temperature-Thickness
下载PDF
Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination 被引量:3
7
作者 Dibor Faye sega gueye +7 位作者 Mor Ndiaye Mamadou Lamine Ba Ibrahima Diatta Youssou Traore Masse Samba Diop Gora Diop Amadou Diao Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第4期43-55,共13页
This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting ... This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting the performance of the solar cell, as it produces the maximum amount of electrical charges, contributing to the photocurrent. Determining the thickness of the wafer cannot be only mechanical. It takes into account the internal physical mechanisms of generation-diffusion-recombination of excess minority carriers. They are also influenced by external factors such as temperature and magnetic field. Under these conditions, magneto transport equation is required to be applied on excess minority carrier in lamella base silicon solar cell. It yields maximum diffusion coefficient which result on Lorentz law and Umklapp process. Then from photocurrent, back surface recombination velocity expressions are derived, both maximum diffusion coefficient and thickness dependent. The plot of the back surface recombination calibration curves as function of lamella width, leads to its maximum values, trough intercept points. Lamella optimum width is then obtained, both temperature and magnetic field dependent and expressed in relationships to show the required base thickness in the elaboration process. 展开更多
关键词 Silicon Vertical JUNCTION Back Surface Recombination Velocity Magnetic Field TEMPERATURE LAMELLA WIDTH
下载PDF
Influence of Both Magnetic Field and Temperature on Silicon Solar Cell Base Optimum Thickness Determination 被引量:1
8
作者 Nouh Mohamed Moctar Ould Mohamed Ousmane Sow +7 位作者 sega gueye Youssou Traore Ibrahima Diatta Amary Thiam Mamour Amadou Ba Richard Mane Ibrahima Ly Gregoire Sissoko 《Journal of Modern Physics》 2019年第13期1596-1605,共10页
The minority carrier’s recombination velocity at the junction and at the back surface is used for the modeling and determination of the optimum thickness of the base of a silicon solar cell in the static regime, unde... The minority carrier’s recombination velocity at the junction and at the back surface is used for the modeling and determination of the optimum thickness of the base of a silicon solar cell in the static regime, under magnetic field and temperature influence. This study takes into account the Umklapp process and the Lorentz effect on the minority carriers photogenerated in the base. 展开更多
关键词 Silicon Solar Cell Diffusion COEFFICIENT Surface Recombination Velocity OPTIMUM BASE Thickness LORENTZ and Umklapp Processes
下载PDF
Design Methods for Improving the Performance and Thermal Stability of Radar
9
作者 sega gueye Brayima Dakyo +2 位作者 Sylvain Alves Jacques Raharijaona Philippe Eudeline 《Journal of Energy and Power Engineering》 2013年第1期148-154,共7页
The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, ... The radar power supplies exhibit a complex electronics. The development of more and more compact systems leads to master the interaction between different parts of the power supply while reducing electronic circuits, magnetic and thermal couplings from the constitutive circuitry. The consideration of these phenomena is very difficult at the design of the power supply. This paper presents two complementary methods based first on a circuitry model for the quantification of heat sources and secondly on finite element model for heat diffusion. This approach can help a designer in the goal of improving the performances and thermal stability of radar tied to the supply circuit subset. 展开更多
关键词 Thermal management power MOSFET losses radar supply.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部