The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable...The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.展开更多
Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising coc...Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising cocatalysts based on their metallic conductivity,excessive active reaction sites,and enlarged surface area.The current review focuses on the properties and applications of Ti_(3)C_(2)MXenes useful in the field of photocatalysis.More specifically,surface modification of Ti_(3)C_(2)MXenes by varying synthesis parameters to get pure materials and also composites with the role of functional groups towards solar energy conversion applications is highlighted in this review.The effect of etching and oxidizing pathways to get an efficient cocatalyst has been discussed in detail.Considering the significant effect of parameters,optimum synthesis conditions such as etchant type,concentration,time and type of intercalant in both the Ti_(3)C_(2)synthesis approaches for improved photoactivity are discussed.Additionally,the surface modification of Ti_(3)C_(2)through oxidation for TiO2growth on its surface is deliberated with a detailed discussion on etchant type,concentration,etching time,and environmental factors.The optimum oxidation condition,including temperature,time,and environment for thermal treatment of Ti_(3)C_(2),were also included.Lastly,the review summarizes the conclusion and future perspectives for solar energy conversion applications.展开更多
基金part of a research project PIF Alfa HI initiative 726174Alfaisal University and its Office of Research&Innovation for their continuous support throughout this study。
文摘The review is a comprehensive discussion of current research advances,commercial scale developments,challenges,and techno-eco nomics for the entire H_(2) value chain,including production,mainly focusing on sustainable sources,storage,and transport.The challenges,advantages,and uses of H_(2) energy are included at length.Moreover,apart from the sustainable production approaches,the approaches and current developments for combating the carbon dioxide(CO_(2))emissions from existing H_(2) production facilities are highlighted in terms of ca rbon capture,utilization,and storage(CCUS).Concisely,the review discusses current material and recent technological adva ncements in developing pilot projects and large-scale establishments for viable and rapidly emerging sou rce-ba sed H_(2) productio n.Moreover,the review also aims to provide an in-depthdiscussion and explore current developments based on the advantages of H_(2) energy in terms of its utilization,based on its high energy density,and its ability to be used as a feedstock and fuel.On the other hand,the challenges of H_(2) are also elabo rated.Next,the role of CCUS in a carbon-neutral economy and value chain for minimization of emissions from existing facilities is thoroughly deliberated,and the recent commercial-scale implementation of CCUS technologies is highlighted.Extending the utilization and recycling of captured CO_(2) emissions along with H_(2) to produce e-fuels in terms of current advances is detailed in this review.Fu rthermore,the most applicable,efficient,a nd develo ping approaches are discussed for physical and chemical H_(2) storage,considering recent la rge-scale implementations of liquid carriers and liquid organic hydrogen carriers as storage options.Lastly,the review elaborates on recent insights into advances in H_(2) transport infrastructure,including compressed and liquid H_(2) delivery via roads,ships,pipelines,and flight cargo.The review gives precise insights into the recent scenario through an elaborated conclusion of each discussion topic separately and a discussion of future perspectives.The current review will help researchers to fully understand the ongoing research advancements and challenges in the H_(2) value chain for formulating new solutions for sustainable H_(2) production,alo ng with focusing on suitable approaches for its storage and tra nsport to make the production and utilization of H_(2) applicable on a large scale.
基金supported by United Arab Emirates University(UAEU),United Arab Emirates under research fund no 12N097。
文摘Photocatalytic solar to energy conversion is considered an attractive approach for overcoming energy crises and environmental concerns.Recently,titanium carbide(Ti_(3)C_(2))MXenes have been recognized as promising cocatalysts based on their metallic conductivity,excessive active reaction sites,and enlarged surface area.The current review focuses on the properties and applications of Ti_(3)C_(2)MXenes useful in the field of photocatalysis.More specifically,surface modification of Ti_(3)C_(2)MXenes by varying synthesis parameters to get pure materials and also composites with the role of functional groups towards solar energy conversion applications is highlighted in this review.The effect of etching and oxidizing pathways to get an efficient cocatalyst has been discussed in detail.Considering the significant effect of parameters,optimum synthesis conditions such as etchant type,concentration,time and type of intercalant in both the Ti_(3)C_(2)synthesis approaches for improved photoactivity are discussed.Additionally,the surface modification of Ti_(3)C_(2)through oxidation for TiO2growth on its surface is deliberated with a detailed discussion on etchant type,concentration,etching time,and environmental factors.The optimum oxidation condition,including temperature,time,and environment for thermal treatment of Ti_(3)C_(2),were also included.Lastly,the review summarizes the conclusion and future perspectives for solar energy conversion applications.