A nuclear cardiology test is the most commonly performed non-invasive cardiac imaging test in patients with heart failure, and it plays a pivotal role in their assessment and management. Quantitative gated single posi...A nuclear cardiology test is the most commonly performed non-invasive cardiac imaging test in patients with heart failure, and it plays a pivotal role in their assessment and management. Quantitative gated single positron emission computed tomography (QGS) is used to assess quantitatively cardiac volume, left ventricular ejection fraction (LVEF), stroke volume, and cardiac diastolic function. Resting and stress myocardial perfusion imaging, with exercise or pharmacologic stress, plays a fundamental role in distinguishing ischemic from nonischemic etiology of heart failure, and in demonstrating myocardial viability. Diastolic heart failure also termed as heart failure with a preserved LVEF is readily identified by nuclear cardiology techniques and can accurately be estimated by peak filling rate (PFR) and time to PFR. Movement of the left ventricle can also be readily assessed by QGS, with newer techniques such as threedimensional, wall thickening evaluation aiding its assessment. Myocardial perfusion imaging is also commonly used to identify candidates for implantable cardiac defibrillator and cardiac resynchronization therapies. Neurotransmitter imaging using 123 I-metaiodobenzylguanidine offers prognostic information in patients with heart failure. Metabolism and function in the heart are closely related, and energy substrate metabolism is a potential target of medical therapies to improve cardiac function in patients with heart failure. Cardiac metabolic imaging using 123 I-15-(p-iodophenyl)3-R, S-methylpentadecacoic acid is a commonly used tracer in clinical studies to diagnose metabolic heart failure. Nuclear cardiology tests, including neurotransmitter imaging and metabolic imaging, are now easily preformed with new tracers to refine heart failure diagnosis. Nuclear cardiology studies contribute significantly to guiding management decisions for identifying cardiac risk in patients with heart failure.展开更多
文摘A nuclear cardiology test is the most commonly performed non-invasive cardiac imaging test in patients with heart failure, and it plays a pivotal role in their assessment and management. Quantitative gated single positron emission computed tomography (QGS) is used to assess quantitatively cardiac volume, left ventricular ejection fraction (LVEF), stroke volume, and cardiac diastolic function. Resting and stress myocardial perfusion imaging, with exercise or pharmacologic stress, plays a fundamental role in distinguishing ischemic from nonischemic etiology of heart failure, and in demonstrating myocardial viability. Diastolic heart failure also termed as heart failure with a preserved LVEF is readily identified by nuclear cardiology techniques and can accurately be estimated by peak filling rate (PFR) and time to PFR. Movement of the left ventricle can also be readily assessed by QGS, with newer techniques such as threedimensional, wall thickening evaluation aiding its assessment. Myocardial perfusion imaging is also commonly used to identify candidates for implantable cardiac defibrillator and cardiac resynchronization therapies. Neurotransmitter imaging using 123 I-metaiodobenzylguanidine offers prognostic information in patients with heart failure. Metabolism and function in the heart are closely related, and energy substrate metabolism is a potential target of medical therapies to improve cardiac function in patients with heart failure. Cardiac metabolic imaging using 123 I-15-(p-iodophenyl)3-R, S-methylpentadecacoic acid is a commonly used tracer in clinical studies to diagnose metabolic heart failure. Nuclear cardiology tests, including neurotransmitter imaging and metabolic imaging, are now easily preformed with new tracers to refine heart failure diagnosis. Nuclear cardiology studies contribute significantly to guiding management decisions for identifying cardiac risk in patients with heart failure.