期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Boosting Pseudocapacitive Behavior of Supercapattery Electrodes by Incorporating a Schottky Junction for Ultrahigh Energy Density 被引量:2
1
作者 selvaraj seenivasan Kyu In Shim +4 位作者 Chaesung Lim Thangavel Kavinkumar Amarnath T.Sivagurunathan Jeong Woo Han Do-Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期15-35,共21页
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not m... Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes.In the present study,a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism.The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition.The Schottky junction accelerates and decelerates the diffusion of OH-/K+ions during the charging and discharging processes,respectively,to improve the pseudocapacitive behavior.The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g^(-1)at 2 A g^(-1)matches almost that of the positive electrode’s 2,795 C g^(-1)at 3 A g^(-1).As a result,with the equivalent contribution from the positive and negative electrodes,an energy density of 236.1 Wh kg^(-1)is achieved at a power density of 921.9 W kg^(-1)with a total active mass of 15 mg cm-2.This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density,thus,offering a route for further advances in electrochemical energy storage and conversion processes. 展开更多
关键词 PSEUDO-CAPACITANCE Negative electrode Supercapattery Atomic layer deposition Energy density
下载PDF
Multilayer Strategy for Photoelectrochemical Hydrogen Generation:New Electrode Architecture that Alleviates Multiple Bottlenecks 被引量:1
2
作者 selvaraj seenivasan Hee Moon Do‑Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期92-109,共18页
Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks,such as low charge separation and injection effici... Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks,such as low charge separation and injection efficiency,low carrier diffusion length and lifetime,and poor durability.A facile strategy for the synthesis of multilayered photoanodes from atomic-layer-deposited ultrathin films has enabled a new type of electrode architecture with a total multilayer thickness of 15–17 nm.We illustrate the advantages of this electrode architecture by using nanolayers to address different bottlenecks,thus producing a multilayer photoelectrode with improved interface kinetics and shorter electron transport path,as determined by interface analyses.The photocurrent density was twice that of the bare structure and reached a maximum of 33.3±2.1 mA cm^(−2) at 1.23 VRHE.An integrated overall water-splitting cell consisting of an electrocatalytic NiS cathode and Bi_(2)S_(3)/NiS/NiFeO/TiO_(2) photoanode was used for precious-metal-free seawater splitting at a cell voltage of 1.23 V without degradation.The results and root analyses suggest that the distinctive advantages of the electrode architecture,which are superior to those of bulk bottom-up core–shell and hierarchical architectures,originate from the high density of active sites and nanometer-scale layer thickness,which enhance the suitability for interface-oriented energy conversion processes. 展开更多
关键词 Atomic layer deposition Bismuth sulfide n-p junction PHOTOELECTROCHEMICAL Nickel sulfide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部