With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem...With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.展开更多
A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation...A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.展开更多
We propose a novel sulfide-driven process to recover N_(2)O during the traditional denitrification process.The optimum initial sulfide concentration was 120 mg/L,and the N_(2)O percentage in the gaseous products (N_(2...We propose a novel sulfide-driven process to recover N_(2)O during the traditional denitrification process.The optimum initial sulfide concentration was 120 mg/L,and the N_(2)O percentage in the gaseous products (N_(2)O+N_(2)) was up to 82.9%.Moreover,sulfide involved in denitrification processes could substitute for organic carbon as an electron donor,e.g.,1g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate.The accumulation of N_(2)O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N_(2)OR),which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N_(2)OR.When the initial sulfide concentration was 120 mg/L,the N_(2)OR activity was only 36.8%of its original level.According to the results of cyclic voltammetry,circular dichroism spectra and fluorescence spectra,significant changes in the conformations and protein structures of cyt c were caused by sulfide,and cyt c completely lost its electron transport capacity.This study provides a new concept for N_(2)O recovery driven by sulfide in the denitrification process.In addition,the findings regarding the mechanism of the inhibition of N_(2)OR activity have important implications both for reducing emissions of N_(2)O and recovering N_(2)O in the sulfide-driven denitrification process.展开更多
The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months.The average removal efficiencies of ammonia and nitrite wer...The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months.The average removal efficiencies of ammonia and nitrite were both over 80%,and the maximum total nitrogen removal rate of 1.85 kg N/(m^3 ·day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L.Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity,and the cell size was quite uniform.Transmission electron microscope photos showed that cells were round or oval,the cellular diameter was 0.6-1.0 μm,and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume.Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250).Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp.,a new anammox species.In addition,the average effluent suspended solid (MLSS) concentrations of outlets I (above the non-woven carrier) and II (below the non-woven carrier) were 0.0009 and 0.0035 g/L,respectively.This showed that the non-woven carrier could catch the biomass effectively,which increased biomass and improved the nitrogen removal rate in the reactor.展开更多
Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has com...Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has competitive advantages regarding product design complexity,product personalization,and on-demand manufacturing.The emergence of 3 D technology provides innovative strategies and new ways to develop novel drug delivery systems.This review summarizes the application of 3 D printing technologies in the pharmaceutical field,with an emphasis on the advantages of 3 D printing technologies for achieving rapid drug delivery,personalized drug delivery,compound drug delivery and customized drug delivery.In addition,this article illustrates the limitations and challenges of 3 D printing technologies in the field of pharmaceutical formulation development.展开更多
In this study,a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation.Herein,membrane module was endowed functions as microalgae retention and CO2 carbonation.The results i...In this study,a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation.Herein,membrane module was endowed functions as microalgae retention and CO2 carbonation.The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm,photosynthetically active radiation was 36 W/m^2 and the CO2 concentration was 10%(v/v).In long-term cultivation,the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods.The concentrations of chlorophyll a,chlorophyll b and carotenoids were increased about 23.2,14.9 and 6.3 mg/L respectively in period I;meanwhile,the accumulation was about 25.0,14.5,6.6 mg/L respectively in the periodⅡ.Furthermore,the pH was kept about 5.5-7.5 due to intermittent carbonation mode,which was suitable for the growth of microalgae.Transmembrane pressure(TMP)was only increased by 0.19 and 0.16 bar in the end of periodsⅠandⅡ,respectively.The pure flux recovered to 75%-80%of the original value by only hydraulic cleaning.Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.展开更多
基金supported by China Natural Scientific and Technological Support Projects(Wenchuan Fault Scientific Drilling)National Natural Scientific Foundation of China(Grant No.41204047)
文摘With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.
基金supported by the National Natural Science Foundation of China(No.22001248)the Fundamental Research Funds for the Central Universities and University of Chinese Academy of Sciences.
文摘A charge transfer complex(CTC)-enabled photoreduction of ether phosphonium salts for the generation of oxyalkyl radicals was described.The photoreduction provides a convenient method to achieve selective oxyalkylation of enamides with broad substrate scope.The method features operational simplicity,mild and inherent green conditions.
基金financially supported by the National Natural Science Foundation of China (No. 51878111)the National Key Research and Development Project (No. 2019YFA0705804)+1 种基金the Natural Science Foundation of Jiangsu Province (No. BK20181224)the Liaoning Revitalization Talents Program (No. XLYC1807067)。
文摘We propose a novel sulfide-driven process to recover N_(2)O during the traditional denitrification process.The optimum initial sulfide concentration was 120 mg/L,and the N_(2)O percentage in the gaseous products (N_(2)O+N_(2)) was up to 82.9%.Moreover,sulfide involved in denitrification processes could substitute for organic carbon as an electron donor,e.g.,1g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate.The accumulation of N_(2)O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N_(2)OR),which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N_(2)OR.When the initial sulfide concentration was 120 mg/L,the N_(2)OR activity was only 36.8%of its original level.According to the results of cyclic voltammetry,circular dichroism spectra and fluorescence spectra,significant changes in the conformations and protein structures of cyt c were caused by sulfide,and cyt c completely lost its electron transport capacity.This study provides a new concept for N_(2)O recovery driven by sulfide in the denitrification process.In addition,the findings regarding the mechanism of the inhibition of N_(2)OR activity have important implications both for reducing emissions of N_(2)O and recovering N_(2)O in the sulfide-driven denitrification process.
基金supported by the Fundamental Research Funds for the Central Universities (No. DUT09RC(3)304)the Key Laboratory of Industrial Ecology and Environmental Engineering,China Ministry of Education (No.KLIEEE-09-09)the National Natural Science Foundation of China (No. 51008045)
文摘The anaerobic ammonium oxidation (anammox) process was successfully started up from conventional activated sludge using a hybrid bioreactor within 2 months.The average removal efficiencies of ammonia and nitrite were both over 80%,and the maximum total nitrogen removal rate of 1.85 kg N/(m^3 ·day) was obtained on day 362 with the initial sludge concentration of 0.7 g mixed liquor suspended solids (MLSS)/L.Scanning electron microscope (SEM) observation of the granular sludge in the hybrid reactor clearly showed a high degree of compactness and cell sphericity,and the cell size was quite uniform.Transmission electron microscope photos showed that cells were round or oval,the cellular diameter was 0.6-1.0 μm,and the percentage of the anammoxosome compartment was 51%-85% of the whole cell volume.Fluorescence in situ hybridization analysis (FISH) indicated that anammox bacteria became the dominant population in the community (accounting for more than 51% of total bacteria on day 250).Seven planctomycete 16S rRNA gene sequences were present in the 16S rRNA gene clone library generated from the biomass and affiliated to Candidatus Kuenenia stuttgartiensis and Candidatus Brocadia sp.,a new anammox species.In addition,the average effluent suspended solid (MLSS) concentrations of outlets I (above the non-woven carrier) and II (below the non-woven carrier) were 0.0009 and 0.0035 g/L,respectively.This showed that the non-woven carrier could catch the biomass effectively,which increased biomass and improved the nitrogen removal rate in the reactor.
基金supported by the National Science and Technology Major Project which belongs to“The research on the key technology of 3D printing techniques in the field of pharmaceutical preparation”(No.2017ZX09201-003-011,China)supported by the China Pharmaceutical Association-Yiling Biomedical Innovation Project(China)financial and instrumental support from Jingxin Pharmaceutical Co.,Ltd.(Zhejiang,China)
文摘Three-dimensional printing is a technology that prints the products layer-by-layer,in which materials are deposited according to the digital model designed by computer aided design(CAD)software.This technology has competitive advantages regarding product design complexity,product personalization,and on-demand manufacturing.The emergence of 3 D technology provides innovative strategies and new ways to develop novel drug delivery systems.This review summarizes the application of 3 D printing technologies in the pharmaceutical field,with an emphasis on the advantages of 3 D printing technologies for achieving rapid drug delivery,personalized drug delivery,compound drug delivery and customized drug delivery.In addition,this article illustrates the limitations and challenges of 3 D printing technologies in the field of pharmaceutical formulation development.
基金This work was financial supported by the National Natural Science Foundation of China(Grant No.51878111)the LiaoNing Revitalization Talents Program(No.XLYC1807067)the Programme of Introducing Talents of Discipline to Universities(No.B13012).
文摘In this study,a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation.Herein,membrane module was endowed functions as microalgae retention and CO2 carbonation.The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm,photosynthetically active radiation was 36 W/m^2 and the CO2 concentration was 10%(v/v).In long-term cultivation,the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods.The concentrations of chlorophyll a,chlorophyll b and carotenoids were increased about 23.2,14.9 and 6.3 mg/L respectively in period I;meanwhile,the accumulation was about 25.0,14.5,6.6 mg/L respectively in the periodⅡ.Furthermore,the pH was kept about 5.5-7.5 due to intermittent carbonation mode,which was suitable for the growth of microalgae.Transmembrane pressure(TMP)was only increased by 0.19 and 0.16 bar in the end of periodsⅠandⅡ,respectively.The pure flux recovered to 75%-80%of the original value by only hydraulic cleaning.Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.