The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily i...The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily identified.It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes,the products of supernovae.However,neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/γ-ray emitters.Here we report the discovery of one of the nearest(127.7±0.3 pc)neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9(hereafter J2354).Utilizing the time-resolved ground-based spectroscopy and space photometry,we find that J2354 hosts an unseen compact object with M_(inv)being 1.4-1.6 M_(⊙).The follow-up Swift ultraviolet(UV)and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object.Hence,J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf.Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the 6σflux upper limit of 12.5μJy.Therefore,the neutron star candidate in J2354 can only be revealed via our time-resolved observations.Interestingly,the distance between J2354 and our Earth can be as close as~50 pc around 2.5 million years(Myrs)ago,as revealed by the Gaia kinematics.Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain,thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFA1600401)the National Natural Science Foundation of China(NSFC)(Grant Nos.11925301+10 种基金12033006)supported by the NSFC(Grant Nos.11973002,and 12322303)supported by the NSFC(Grant No.12103041)supported by the NSFC(Grant Nos.11988101,and 11933004)supported by the NSFC(Grant No.U2031117)supported by the NSFC(Grant No.12033004)supported by the NSFC(Grant No.12273029)supported by the NSFC(Grant No.12221003)supported by the NSFC(Grant No.11933008)supported by the NSFC(Grant No.12090044)supported by the NSFC(Grant Nos.12041301,and 12121003)。
文摘The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily identified.It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes,the products of supernovae.However,neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/γ-ray emitters.Here we report the discovery of one of the nearest(127.7±0.3 pc)neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9(hereafter J2354).Utilizing the time-resolved ground-based spectroscopy and space photometry,we find that J2354 hosts an unseen compact object with M_(inv)being 1.4-1.6 M_(⊙).The follow-up Swift ultraviolet(UV)and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object.Hence,J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf.Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the 6σflux upper limit of 12.5μJy.Therefore,the neutron star candidate in J2354 can only be revealed via our time-resolved observations.Interestingly,the distance between J2354 and our Earth can be as close as~50 pc around 2.5 million years(Myrs)ago,as revealed by the Gaia kinematics.Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain,thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.