期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Contemporary Review on Drought Modeling Using Machine Learning Approaches 被引量:2
1
作者 Karpagam Sundararajan Lalit Garg +5 位作者 Kathiravan Srinivasan Ali Kashif Bashir Jayakumar Kaliappan Ganapathy Pattukandan Ganapathy senthil kumaran selvaraj T.Meena 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期447-487,共41页
Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has face... Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughtsin the last few decades. Predicting future droughts is vital for framing drought management plans to sustainnatural resources. The data-driven modelling for forecasting the metrological time series prediction is becomingmore powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques havedemonstrated success in the drought prediction process and are becoming popular to predict the weather, especiallythe minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecastinginclude support vector machines (SVM), support vector regression, random forest, decision tree, logistic regression,Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzyinference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models,and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presentsa recent review of the literature using ML in drought prediction, the drought indices, dataset, and performancemetrics. 展开更多
关键词 Drought forecasting machine learning drought indices stochastic models fuzzy logic dynamic method hybrid method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部