Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alter...Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alters brain urea levels, histopathology, and key Parkinsonism<span>-related genes in the striatum. Hematoxylin and eosin staining was performed for histopathology assessment and real-time polymerase chain reaction was performed for gene expression. Rotenone 3 mg/kg body weight (Rot-3-ip) for 21 days and rotenone 50 mg/kg body weight (Rot-50-po) for 28 days significantly (p < 0.05) altered alpha-synuclein and tyrosine hydroxylase protein expression and <i>Snca</i>, <i>Becn</i>1 and <i>Prkaa</i>1 gene expression in the striatum. Lewy bodies were visible in both Rot-3-ip and Rot-50-po rat brains. There were </span><span>contrasting features in brain and liver histopathology between the oral and</span><span> intraperitoneal rotenone treatment groups. However, there was no significant (p < 0.05) difference in the brain urea levels between intraperitoneal and oral rotenone treatment groups. The propagation of PD through oral and intraperitoneal rotenone</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">can have different impacts on the pathological sequence of events based on the molecular approach.展开更多
文摘Parkinson’s disease (PD) is a debilitating neurological disorder that affects <span>the aged population globally. This study aimed to explore how oral- and in</span>traperitoneal-rotenone-induced PD alters brain urea levels, histopathology, and key Parkinsonism<span>-related genes in the striatum. Hematoxylin and eosin staining was performed for histopathology assessment and real-time polymerase chain reaction was performed for gene expression. Rotenone 3 mg/kg body weight (Rot-3-ip) for 21 days and rotenone 50 mg/kg body weight (Rot-50-po) for 28 days significantly (p < 0.05) altered alpha-synuclein and tyrosine hydroxylase protein expression and <i>Snca</i>, <i>Becn</i>1 and <i>Prkaa</i>1 gene expression in the striatum. Lewy bodies were visible in both Rot-3-ip and Rot-50-po rat brains. There were </span><span>contrasting features in brain and liver histopathology between the oral and</span><span> intraperitoneal rotenone treatment groups. However, there was no significant (p < 0.05) difference in the brain urea levels between intraperitoneal and oral rotenone treatment groups. The propagation of PD through oral and intraperitoneal rotenone</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">can have different impacts on the pathological sequence of events based on the molecular approach.