Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb2 CTx)to hierarchical Nb2 CTx/Nb2O5 composite.In the hybrid,the Nb2O5 nanorods are well dispersed...Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb2 CTx)to hierarchical Nb2 CTx/Nb2O5 composite.In the hybrid,the Nb2O5 nanorods are well dispersed in and/or on the Nb2 CTx.Thanks to the synergetic contributions from the high capacity of Nb2O5 and superb electrical conductivity of the two-dimensional Nb2 CTx itself,the resultant Nb2 CTx/Nb2O5 hybrid exhibits excellent rate behaviors and stable long-term cycling behaviors,when evaluated as anodes for Li-ion batteries.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.51772127 and 51772131)Taishan Scholars(No.ts201712050)+3 种基金Major Program of Shandong Province Natural Science Foundation(No.ZR2018ZB0317)Natural Science Doctoral Foundation of Shandong Province(No.ZR2019BEM038)Natural Science Doctoral Foundation of the University of Jinan(No.XBS1830)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong。
文摘Herein,a simple yet efficient hydrothermal strategy is developed to in-situ convert multi-layered niobium-based MXene(Nb2 CTx)to hierarchical Nb2 CTx/Nb2O5 composite.In the hybrid,the Nb2O5 nanorods are well dispersed in and/or on the Nb2 CTx.Thanks to the synergetic contributions from the high capacity of Nb2O5 and superb electrical conductivity of the two-dimensional Nb2 CTx itself,the resultant Nb2 CTx/Nb2O5 hybrid exhibits excellent rate behaviors and stable long-term cycling behaviors,when evaluated as anodes for Li-ion batteries.