期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interface engineering of an electrospun nanofiber-based composite cathode for intermediate-temperature solid oxide fuel cells
1
作者 seo ju kim Deokyoon Woo +3 位作者 Donguk kim Tae Kyeong Lee Jaeyeob Lee Wonyoung Lee 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期345-353,共9页
Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface bet... Sluggish oxygen reduction reaction(ORR)kinetics are a major obstacle to developing intermediate-temperature solid-oxide fuel cells(IT-SOFCs).In particular,engineering the anion defect concentration at an interface between the cathode and electrolyte is important for facilitating ORR kinetics and hence improving the electrochemical performance.We developed the yttria-stabilized zirconia(YSZ)nanofiber(NF)-based composite cathode,where the oxygen vacancy concentration is controlled by varying the dopant cation(Y2O3)ratio in the YSZ NFs.The composite cathode with the optimized oxygen vacancy concentration exhibits maximum power densities of 2.66 and 1.51 W cm^(−2)at 700 and 600℃,respectively,with excellent thermal stability at 700℃ over 500 h under 1.0 A cm^(−2).Electrochemical impedance spectroscopy and distribution of relaxation time analysis revealed that the high oxygen vacancy concentration in the NF-based scaffold facilitates the charge transfer and incorporation reaction occurred at the interfaces between the cathode and electrolyte.Our results demonstrate the high feasibility and potential of interface engineering for achieving IT-SOFCs with higher performance and stability. 展开更多
关键词 solid oxide fuel cells NANOFIBER INFILTRATION oxygen reduction reactions oxygen vacancy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部