期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of the Bright Band Characteristics Measured by Micro Rain Radar (MRR) at a Mountain and a Coastal Site in South Korea 被引量:8
1
作者 Joo-Wan CHA Ki-Ho CHANG +1 位作者 seong soo yum Young-Jean CHOI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第2期211-221,共11页
Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004-2006) in South Korea were analyzed to ... Data from a long term measurement of Micro Rain Radar (MRR) at a mountain site (Daegwallyeong, DG, one year period of 2005) and a coastal site (Haenam, HN, three years 2004-2006) in South Korea were analyzed to compare the MRR measured bright band characteristics of stratiform precipitation at the two sites. On average, the bright band was somewhat thicker and the sharpness (average gradient of reflectivity above and below the reflectivity peak) was slightly weaker at DG, compared to those values at HN. The peak reflectivity itself was twice as strong and the relative location of the peak reflectivity within the bright band was higher at HN than at DG. Importantly, the variability of these values was much larger at HN than at DG. The key parameter to cause these differences is suggested to be the difference of the snow particle densities at the two sites, which is related to the degree of riming. Therefore, it is speculated that the cloud microphysical processes at HN may have varied significantly from un-rimed snow growth, producing low density snow particles, to the riming of higher density particles, while snow particle growth at DG was more consistently affected by the riming process, and therefore high density snow particles. Forced uplifting of cloudy air over the mountain area around DG might have resulted in an orographic supercooling effect that led to the enhanced riming of supercooled cloud drops. 展开更多
关键词 Micro Rain Radar bright band thickness and sharpness cloud microphysical processes local characteristics
下载PDF
Local Meteorological and Synoptic Characteristics of Fogs Formed over Incheon International Airport in the West Coast of Korea 被引量:4
2
作者 Chang Ki KIM seong soo yum 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期761-776,共16页
Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal ext... Fogs observed over Incheon international airport (IIA) in the west coast of Korea from January 2002 to August 2006 are classified into categories of coastal fog, cold sea fog, and warm sea fog based on the areal extent of the fogs and the difference between the air temperature (T ) and the SST, i.e., cold sea fog if TSST = T -SST 〉 0~0C and warm sea fog if TSST 〈 0~0C. The numbers of coastal, cold, and warm sea fog cases are 64, 26, and 9. Coastal fogs form most frequently in winter, while cold sea fogs occur mostly in summer and warm sea fogs are observed from January to May but not in November and December. On average the air gets colder by 1.6~0C during the three hours leading up to the coastal fog formation, and an additional cooling of 1.1~0C occurs during the fog. The change in the dew point temperature (T_d) is minimal except during the fog (0.6~0C). Decreases in T for the cold and warm sea fogs are relatively smaller. The average Td is higher than SST during the cold sea fog periods but this T_d is more than 4~0C higher than that for the corresponding non-fog days, suggesting that cold sea fogs be formed by the cooling of already humid air (i.e., T_d〉SST). Increases of T_d are significant during the warm sea fog periods (1.4~0C), implying that effcient moisture supply is essential to warm sea fog formation. Four major synoptic patterns are identified in association with the observed fogs. The most frequent is a north Pacific high that accounts for 38% of cases. Surface or upper inversions are present in 77%, 69%, and 81% of the fog periods for coastal, cold, and warm sea fogs, respectively. 展开更多
关键词 costal fogs sea fogs west coast of Korea meteorological and synoptic characteristics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部