期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhanced stability and rate performance of zinc-doped cobalt hexacyanoferrate (CoZnHCF) by the limited crystal growth and reduced distortion
1
作者 Jihwan Kim seong-hoon yi +1 位作者 Li Li Sang-Eun Chun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期649-658,I0018,共11页
Cobalt hexacyanoferrate (CoHCF) is a potential cathode for aqueous Na-ion batteries due to its high theoretical specific capacity (170 m Ah g^(-1));however,its lower rate capability and cyclability limit its applicati... Cobalt hexacyanoferrate (CoHCF) is a potential cathode for aqueous Na-ion batteries due to its high theoretical specific capacity (170 m Ah g^(-1));however,its lower rate capability and cyclability limit its applications.Structural distortion at a weak N-coordinated crystal field during cycling disintegrates Co,yielding an irreversible reaction.Different Zn amounts ranging 0–1 were added to the Co site to suppress the structural irreversibility of CoHCF,yielding Co_(1-x)Zn_(x)HCF powder;this Zn (x≤0.09) addition reduced the powder’s dimension because the lower four coordination of Zn–N,not the six coordination of Co–N,limits the powder growth.Simultaneously,a small lattice parameter and interaxial angle (~90°) are obtained,implying that a narrower Co_(1-x)Zn_(x)HCF inner structure is formed to accommodate Na ions.Moreover,the electronic conductivity of Co_(1-x)Zn_(x)HCF gradually increased within 0–0.09 range.A smaller particle size with a high surface area leads to a near-surface-limited redox process,similar to a capacitive reaction.Both the surface-limited reaction and electronic conductivity enhances the reversibility due to the smaller charge transfer resistance at the electrode/electrolyte interface caused by Zn addition.Replacing redox-active Co with non-active Zn amount of 0.07 (Co_(1-x)Zn_(x)HCF) slightly reduces the specific capacity from 127 to 119 mAh g^(-1)at 0.1 A g^(-1)due to the shrunken Co charging sites.Rate performance is enhanced by compromising the capacity and reduced distortion,resulting in 81%retention at a 20-times-faster charging rate.Notably,the Co_(1-x)Zn_(x)HCF sample exhibited the good stability while preserving 74%of the initial capacity at 0.5 A g^(-1)after 200 cycles. 展开更多
关键词 Cobalt hexacyanoferrate Rate capability STABILITY Growth limitation Structural distortion Near-surface-limited redox process
下载PDF
Enhanced thermoelectric properties of NbCoSn half-Heuslers through in-situ nanocrystallization of amorphous precursors during the consolidation process
2
作者 Chanwon Jung Kyuseon Jang +13 位作者 Hail Park Jeongin Jang Hanhwi Jang Byungchul Kang Kitae Park Siyuan Zhang Ruben Bueno Villoro SuDong Park Ho Jin Ryu Yeon Sik Jung Min-Wook Oh Christina Scheu seong-hoon yi Pyuck-Pa Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期39-48,共10页
Tailoring nanostructures is a general approach used to obtain enhanced thermoelectric properties for halfHeusler compounds because the wide areas of grain and phase boundaries could be scattering centers that lower la... Tailoring nanostructures is a general approach used to obtain enhanced thermoelectric properties for halfHeusler compounds because the wide areas of grain and phase boundaries could be scattering centers that lower lattice thermal conductivity.However,a common fabrication method based on the sintering of crystalline precursors crushed from as-cast alloy ingots has limitations in obtaining a homogeneous microstructure without microsized impurity phases,owing to residual elemental segregation from casting.In this study,we used amorphous NbCoSn alloys as a precursor for the sintered specimen to obtain a homogeneous NbCoSn bulk specimen without microsized impurity phases and segregation,which led to the enhanced Seebeck coefficient due to the high purity of the half-Heusler phase after crystallization.Moreover,superplasticity originating from amorphous features enabled the powders to be largely deformed during the sintering process,even at a low sintering temperature(953 K).This resulted in less oxidation at both,the grain boundary and the interior,as the O diffusion pathway was blocked during the sintering process.As a result,the NbCoSn0.95Sb0.05 specimen using an amorphous precursor exhibited an enhanced zT of 0.7,due to the increase in the power factor and a decrease in lattice thermal conductivity compared to the specimen using a crystalline precursor. 展开更多
关键词 Half-Heusler compounds AMORPHOUS SUPERPLASTICITY SEGREGATION Atom probe tomography
原文传递
Electrophoretic deposition of a supercapacitor electrode of activated carbon onto an indium-tin-oxide substrate using ethyl cellulose as a binder 被引量:2
3
作者 Taeuk Kim seong-hoon yi Sang-Eun Chun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第23期188-196,共9页
A transparent energy storage device is an essential component for transparent electronics.The increasing demand for high-power devices stimulates the development of transparent supercapacitors with high power density.... A transparent energy storage device is an essential component for transparent electronics.The increasing demand for high-power devices stimulates the development of transparent supercapacitors with high power density.A transparent electrode for such supercapacitors can be assembled via the electrophoretic deposition of an active material powder with a binder onto a transparent substrate.The properties of the binder critically influence the electrochemical behavior and performance of the resulting electrode.Ethyl cellulose(EC)is known as an eco-friendly,transparent,flexible,and inexpensive material.Here,we fabricated an electrode film with EC binder via electrophoretic deposition on an indium tin oxide(ITO)substrate instead of using the conventional polytetrafluoroethylene(PTFE)binder.The assembled electrodes with EC and PTFE were compared to investigate the feasibility of EC as a binder from different perspectives,including homogeneity,wettability,electrochemical behavior,and mechanical stability.The EC enabled the formation of a homogeneous film composed of smaller particles and with a higher specific capacitance compared with films prepared with PTFE.The annealing improved the adhesion strength of the EC because of its glass transition;however,its hydrophobic nature limited utilization of the active material for charge storage.Subsequent electrochemical activation improved the wettability of the electrode,resulting in an increased capacitance of 60 F g^(-1).Furthermore,even with the lower wettability of EC compared with that of PTFE,better rate performance was possible with the EC electrode.The increased mechanical stability after the annealing process ensured an excellent cycle life of 95%capacitance retention for 15,000 cycles. 展开更多
关键词 Electrophoretic deposition Transparent electrode Activated carbon Ethyl cellulose Indium tin oxide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部