期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Neuroprotection of Chrysanthemum indicum Linne against cerebral ischemia/reperfusion injury by anti-inflammatory effect in gerbils 被引量:4
1
作者 Ki-YeonYoo In Hye Kim +9 位作者 Jeong-Hwi Cho li Hyeon Ahn Joon Ha Park Jae-Chul Lee Hyun-Jin Tae Dae Won Kim Jong-Dai Kim seongkweon hong Moo-Ho Won il Jun Kang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期270-277,共8页
In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne(CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying m... In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne(CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region(CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach. 展开更多
关键词 nerve regeneration transient cerebral ischemia delayed neuronal death pyramidal neurons inflammatory cytokines neural regeneration
下载PDF
Activation of immediate-early response gene c-Fos protein in the rat paralimbic cortices after myocardial infarction 被引量:2
2
作者 Ji Yun Ahn Hyun-Jin Tae +9 位作者 Jeong-Hwi Cho In Hye Kim Ji Hyeon Ahn Joon Ha Park Dong Won Kim Jun Hwi Cho Moo-Ho Won seongkweon hong Jae-Chul Lee Jeong Yeol Seo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1251-1257,共7页
c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions.... c-Fos is a good biological marker for detecting the pathogenesis of central nervous system disorders. Few studies are reported on the change in myocardial infarction-induced c-Fos expression in the paralimbic regions. Thus, in this study, we investigated the changes in c-Fos expression in the rat cingulate and piriform cortices after myocardial infarction. Neuronal degeneration in cingulate and piriform cortices after myocardial infarction was detected using cresyl violet staining, Neu N immunohistochemistry and Fluoro-Jade B histofluorescence staining. c-Fos-immunoreactive cells were observed in cingulate and piriform cortices at 3 days after myocardial infarction and peaked at 7 and 14 days after myocardial infarction. But they were hardly observed at 56 days after myocardial infarction. The chronological change of c-Fos expression determined by western blot analysis was basically the same as that of c-Fos immunoreactivity. These results indicate that myocardial infarction can cause the chronological change of immediate-early response gene c-Fos protein expression, which might be associated with the neural activity induced by myocardial infarction. 展开更多
关键词 nerve regeneration paralimbic cortices myocardial infarction c-Fos cingulate cortex piriform cortex immunohistochemistry western analysis neural regeneration
下载PDF
Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia 被引量:1
3
作者 In Hye Kim Yong Hwan Jeon +10 位作者 Tae-Kyeong Lee Jeong Hwi Cho Jae-Chul Lee Joon Ha Park Ji Hyeon Ahn Bich-Na Shin Yang Hee Kim seongkweon hong Bing Chun Yan Moo-Ho Won Yun Lyul Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第6期918-924,共7页
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the n... Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning(2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult(5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28 k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity. 展开更多
关键词 hippocampal subsequent minute pyramidal maintaining attenuated hippocampus neuronal occlusion fatal
下载PDF
Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus
4
作者 Eun Joo Bae Bai Hui Chen +12 位作者 Bing Chun Yan Bich Na Shin Jeong Hwi Cho In Hye Kim Ji Hyeon Ahn Jae Chul Lee Hyun-Jin Tae seongkweon hong Dong Won Kim Jun Hwi Cho Yun Lyul Lee Moo-Ho Won Joon Ha Park 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期944-950,共7页
The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not bee... The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1-3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group, p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. 展开更多
关键词 p53 tumor suppressor gene family cerebral ischemia/reperfusion pyramidal neurons CA1 region delayed neuronal death immunohistochemistry western blotting neural regeneration
下载PDF
Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia
5
作者 seongkweon hong Ji Yun Ahn +12 位作者 Geum-Sil Cho In Hye Kim Jeong Hwi Cho Ji Hyeon Ahn Joon Ha Park Moo-Ho Won Bai Hui Chen Bich-Na Shin Hyun-Jin Tae Seung Min Park Jun Hwi Cho Soo Young Choi Jae-Chul Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1604-1611,共8页
Monocarboxylate transporters(MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ... Monocarboxylate transporters(MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning(IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups(sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region(CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. 展开更多
关键词 nerve regeneration monocarboxylate transporters ischemic preconditioning ischemia/ reperfusion injury hippocampus CA1 pyramidal neurons neural regeneration
下载PDF
Pretreated Glehnia littoralis Extract Prevents Neuronal Death Following Transient Global Cerebral Ischemia through Increases of Superoxide Dismutase 1 and Brain-derived Neurotrophic Factor Expressions in the Gerbil Hippocampal Cornu Ammonis 1 Area 被引量:10
6
作者 Joon Ha Park Tae-Kveono Lee +11 位作者 Bing-Chun Yan Bich-Na Shin Ji Hyeon Ahn In Hye Kim Jeong Hwi Cho Jae-Chul Lee In Koo Hwang Jong Dai Kim seongkweon hong Young Joo Lee Moo-Ho Woll Il Jun Kang 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第15期1796-1803,共8页
Background:Glehnia littoralis,as a traditional herbal medicine to heal various health ailments in East Asia,displays various therapeutic properties including antioxidant effects.However,neuroprotective effects of G.l... Background:Glehnia littoralis,as a traditional herbal medicine to heal various health ailments in East Asia,displays various therapeutic properties including antioxidant effects.However,neuroprotective effects of G.littoralis against cerebral ischemic insults have not yet been addressed.Therefore,in this study,we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI).Methods:Gerbils were subjected to TGCI for 5 min.G.littoralis extract (GLE;100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery.Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining.Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1.For neuroprotective mechanisms,immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done.Results:Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F=29.770,P 〈 0.05) and significantly inhibited activationsof astrocytes (F =22.959,P 〈 0.05) and microglia (F =44.135,P 〈 0.05) in the ischemic CA1 area.In addition,pretreatment with GLE significantly increased expressions of SOD1 (F =28.561,P 〈 0.05) and BDNF (F =55.298,P 〈 0.05) in CA1 pyramidal neurons of the sham-and ischemia-operated groups.Conclusions:Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults,and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD 1 and BDNF expressions as well as attenuation ofglial activation. 展开更多
关键词 Antioxidant Gtial Activation Neurotrophic Factor NEUROPROTECTION Pyramidal Neurons
原文传递
Oenanthe Javanica Extract Protects Against Experimentally Induced Ischemic Neuronal Damage via its Antioxidant Effects 被引量:2
7
作者 Joon Ha Park Jeong Hwi Cho +10 位作者 In Hye Kim Ji Hyeon Ahn Jae-Chul Lee Bai Hui Chen Bich-Na Shin Hyun-Jin Tae Ki-Yeon Yoo seongkweon hong II Jun Kang Moo-Ho Won Jong-Dai Kim 《Chinese Medical Journal》 SCIE CAS CSCD 2015年第21期2932-2937,共6页
Background: Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective eff... Background: Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthejavanica extract (OJE) in the hippocampal comus ammonis 1 region (CA 1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed 100 mg/kg, OJE protected CA 1 pyramidal neurons from ischemic damage in many nonpyramidal cells. Treatment with 200 mg/kg, not In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA 1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE. 展开更多
关键词 Antioxidant Enzymes Hippocampal Comus Ammonis 1 Region: Neuroprotection Oenanthe Javanica Extract: TransientCerebral Ischemia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部