期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intrinsic electrochemical activity of Ni in Ni_(3)Sn_(4) anode accommodating high capacity and mechanical stability for fast-charging lithium-ion batteries 被引量:1
1
作者 Janghyuk Moon Trung Dinh Hoang +6 位作者 Seong Soo park seowan park Dong Young Rhee Junwon Lee Sang A Han Min-Sik park Jung Ho Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期470-477,I0013,共9页
Fast interfacial kinetics derived from bicontinuous three-dimensional(3D)architecture is a strategic feature for achieving fast-charging lithium-ion batteries(LIBs).One of the main reasons is its large active surface ... Fast interfacial kinetics derived from bicontinuous three-dimensional(3D)architecture is a strategic feature for achieving fast-charging lithium-ion batteries(LIBs).One of the main reasons is its large active surface and short diffusion path.Yet,understanding of unusual electrochemical properties still remain great challenge due to its complexity.In this study,we proposed a nickel–tin compound(Ni_(3)Sn_(4))supported by 3D Nickel scaffolds as main frame because the Ni_(3)Sn_(4) clearly offers a higher reversible capacity and stable cycling performance than bare tin(Sn).In order to verify the role of Ni,atomic-scale simulation based on density functional theory systematically addressed to the reaction mechanism and structural evolution of Ni_(3)Sn_(4) during the lithiation process.Our findings are that Ni enables Ni_(3)Sn_(4) to possess higher mechanical stability in terms of reactive flow stress,subsequently lead to improve Li storage capability.This study elucidates an understanding of the lithiation mechanism of Ni_(3)Sn_(4) and provides a new perspective for the design of high-capacity and high-power 3D anodes for fast-charging LIBs. 展开更多
关键词 Lithium-ion batteries Ni_(3)Sn_(4) High-capacity anode 3D-structured electrode Inverse opal structure Density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部