Maize is one of the most nutrient demanding staple crops. Tissue nutrient diagnosis of maize is currently conducted using critical nutrient concentration or dual ratio ranges, but such diagnoses are pathological as bi...Maize is one of the most nutrient demanding staple crops. Tissue nutrient diagnosis of maize is currently conducted using critical nutrient concentration or dual ratio ranges, but such diagnoses are pathological as biased by data redundancy, sub-compositional incoherence and non-normal distribution. The use of orthogonal balances, a compositional data analysis technique, avoids such biases. Our objective was to develop foliar nutrient balance standards for maize. We collected 758 grain yields (15.5% moisture content) and foliar samples at silk stage in maize fields of southern Quebec, Canada, and analyzed ten nutrients in tissues (N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe). Nutrients were arranged into ad hoc balances and computed as isometric log ratios (ilr). An optimized binary classification performed by a customized receiver operating characteristic procedure showed that a critical Mahalanobis distance of 4.21 separated balanced from imbalanced specimens about yield cut-off of 11.83 Mg grain·ha-1 with test performance of 86%. Quebec maize balance standards differed from published standards computed from DRIS norms collected in other agroecosystems. The Redfield N/P ratio in maize leaves was found to be the least variable balance across regions of the world. The DRIS dual ratios and raw concentration values were found to be geometrically inadequate for conducting diagnosis. The unbiased nutrient balance diagnosis combined the critical Mahalanobis distance and a mobile representation of nutrient balances with ilr means of true negative (TN) specimens centered at fulcrums and back-transformed ilr values of TN specimens into raw concentrations loading the buckets below. Nutrients can be appreciated as relative shortage, adequacy or excess in the concentration domain following statistical analysis and diagnosis in the unbiased balance domain.展开更多
The “ionome”, or plant elemental signature, is the elemental composition of an organisms, that may vary with genotypic traits and phenotypic plasticity. Cloudberry (Rubus chamaemorus L.) is a circumboreal wild berry...The “ionome”, or plant elemental signature, is the elemental composition of an organisms, that may vary with genotypic traits and phenotypic plasticity. Cloudberry (Rubus chamaemorus L.) is a circumboreal wild berry naturally growing in oligotrophic oceanic bogs ofQuebecandLabrador. Our objective was to relate cloudberry stand productivity to the ionomes of female ramets and explore the cause of nutrient imbalance in low-performing stands. We analyzed 13 elements in female ramets collected in 86 natural sites where crop productivity varied widely. We computed orthogonally arranged balances reflecting plant stoichiometric rules and soil biogeochemistry. Balances were expressed as isometric log ratios (ilr) between ad hoc sub-compositions. Balances were synthesized into a Mahalanobis distance optimized based on receiving operating characteristics (ROC). The critical Mahalanobis distance was found to be 5.29 for cutoff berry yield of3.8 g.m-2 with test performance of 0.88, as measured by the area under the ROC curve. Although past research on cloudberry focused mainly on the N/P ratio, this exploratory mineral balance analysis indicated that imbalance in the [P,N | S,C] and [Al | Nutrients] partitions appeared to be the factors limiting the most cloudberry productivity in the bogs. Some highly productive stands showed relatively high C fixation and K use efficiency. Due to the complexity of interactions, diagnosis should be conducted computing first a global imbalance index (Mahalanobis distance), then examining in the balance domain binary partitions departing most from reference, and finally appreciating relative shortage, sufficiency or excess of elements in the concentration domain.展开更多
Soil organic matter (SOM) is a key factor for building and maintaining soil quality. The SOM quality is commonly assessed using densitometric and sieving separation methods, but such methods do not inform on the bioch...Soil organic matter (SOM) is a key factor for building and maintaining soil quality. The SOM quality is commonly assessed using densitometric and sieving separation methods, but such methods do not inform on the biochemical composition of SOM. Our objective was to evaluate the van Soest extraction procedure for soluble (SOL), holocellulose (HOLO) and lignin/cutin (LIC) fractions of SOM after incorporating crop residues and animal wastes into a C-depleted loamy sand. Millet cuttings, oat straw, fresh cattle manure and cattle manure compost were dried, sieved to obtain 53 - 250 and 250 - 2000 μm size fractions and characterized biochemically using a modified NDF-ADF-ADL van Soest method. Soil was also sieved into 53 - 250 and 250 - 2000 μm fractions. On a dry mass basis, crop residues contained 60% - 70% holocellulose while animal wastes contained more than 40% ash. Each soil fraction was combined with three rates of the corresponding organic fraction (2, 4, and 6 Mg·haǃ millet forage cuttings or oat straw and 5, 10, and 15 Mg·haǃ of cattle manure or cattle manure compost). Changes in soil biochemical components were analyzed using the balance method of compositional data analysis. Amendment, application rate and size fraction influenced significantly (p < 0.05) the [SOL | HOLO] balance but did not significantly affect the [SOL,HOLO | LIC] balance. The [SOL | HOLO] increased linearly with addition rate of crop residues, and decreased linearly with addition rate of animal wastes. This approach of balancing biochemical SOM components is a promising method to monitor the changes in SOM quality after the incorporation of organic residues and to elaborate beneficial practices for managing crop residues and animal wastes in agro-ecosystems.展开更多
文摘Maize is one of the most nutrient demanding staple crops. Tissue nutrient diagnosis of maize is currently conducted using critical nutrient concentration or dual ratio ranges, but such diagnoses are pathological as biased by data redundancy, sub-compositional incoherence and non-normal distribution. The use of orthogonal balances, a compositional data analysis technique, avoids such biases. Our objective was to develop foliar nutrient balance standards for maize. We collected 758 grain yields (15.5% moisture content) and foliar samples at silk stage in maize fields of southern Quebec, Canada, and analyzed ten nutrients in tissues (N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe). Nutrients were arranged into ad hoc balances and computed as isometric log ratios (ilr). An optimized binary classification performed by a customized receiver operating characteristic procedure showed that a critical Mahalanobis distance of 4.21 separated balanced from imbalanced specimens about yield cut-off of 11.83 Mg grain·ha-1 with test performance of 86%. Quebec maize balance standards differed from published standards computed from DRIS norms collected in other agroecosystems. The Redfield N/P ratio in maize leaves was found to be the least variable balance across regions of the world. The DRIS dual ratios and raw concentration values were found to be geometrically inadequate for conducting diagnosis. The unbiased nutrient balance diagnosis combined the critical Mahalanobis distance and a mobile representation of nutrient balances with ilr means of true negative (TN) specimens centered at fulcrums and back-transformed ilr values of TN specimens into raw concentrations loading the buckets below. Nutrients can be appreciated as relative shortage, adequacy or excess in the concentration domain following statistical analysis and diagnosis in the unbiased balance domain.
文摘The “ionome”, or plant elemental signature, is the elemental composition of an organisms, that may vary with genotypic traits and phenotypic plasticity. Cloudberry (Rubus chamaemorus L.) is a circumboreal wild berry naturally growing in oligotrophic oceanic bogs ofQuebecandLabrador. Our objective was to relate cloudberry stand productivity to the ionomes of female ramets and explore the cause of nutrient imbalance in low-performing stands. We analyzed 13 elements in female ramets collected in 86 natural sites where crop productivity varied widely. We computed orthogonally arranged balances reflecting plant stoichiometric rules and soil biogeochemistry. Balances were expressed as isometric log ratios (ilr) between ad hoc sub-compositions. Balances were synthesized into a Mahalanobis distance optimized based on receiving operating characteristics (ROC). The critical Mahalanobis distance was found to be 5.29 for cutoff berry yield of3.8 g.m-2 with test performance of 0.88, as measured by the area under the ROC curve. Although past research on cloudberry focused mainly on the N/P ratio, this exploratory mineral balance analysis indicated that imbalance in the [P,N | S,C] and [Al | Nutrients] partitions appeared to be the factors limiting the most cloudberry productivity in the bogs. Some highly productive stands showed relatively high C fixation and K use efficiency. Due to the complexity of interactions, diagnosis should be conducted computing first a global imbalance index (Mahalanobis distance), then examining in the balance domain binary partitions departing most from reference, and finally appreciating relative shortage, sufficiency or excess of elements in the concentration domain.
文摘Soil organic matter (SOM) is a key factor for building and maintaining soil quality. The SOM quality is commonly assessed using densitometric and sieving separation methods, but such methods do not inform on the biochemical composition of SOM. Our objective was to evaluate the van Soest extraction procedure for soluble (SOL), holocellulose (HOLO) and lignin/cutin (LIC) fractions of SOM after incorporating crop residues and animal wastes into a C-depleted loamy sand. Millet cuttings, oat straw, fresh cattle manure and cattle manure compost were dried, sieved to obtain 53 - 250 and 250 - 2000 μm size fractions and characterized biochemically using a modified NDF-ADF-ADL van Soest method. Soil was also sieved into 53 - 250 and 250 - 2000 μm fractions. On a dry mass basis, crop residues contained 60% - 70% holocellulose while animal wastes contained more than 40% ash. Each soil fraction was combined with three rates of the corresponding organic fraction (2, 4, and 6 Mg·haǃ millet forage cuttings or oat straw and 5, 10, and 15 Mg·haǃ of cattle manure or cattle manure compost). Changes in soil biochemical components were analyzed using the balance method of compositional data analysis. Amendment, application rate and size fraction influenced significantly (p < 0.05) the [SOL | HOLO] balance but did not significantly affect the [SOL,HOLO | LIC] balance. The [SOL | HOLO] increased linearly with addition rate of crop residues, and decreased linearly with addition rate of animal wastes. This approach of balancing biochemical SOM components is a promising method to monitor the changes in SOM quality after the incorporation of organic residues and to elaborate beneficial practices for managing crop residues and animal wastes in agro-ecosystems.