Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity ...Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.展开更多
The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide...The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide), close to the epicenter, is one that travelled a long distance with damaging consequences. Using QuickBird satellite images and GIS tools, the seismogenic mass movements are analyzed, and the movement phases, travel path, and post-catastrophic processes of Niujuan landslide are described and discussed. Image interpretation and a GPS survey showed that the mass movements denuded 37% of the research area. The Niujuan landslide moved 1 950 m along the Lianhuaxingou (莲花心沟) stream, transformed to a debris avalanche, and accumulated in the downstream bed of Niujuan Valley, where they formed a dam 30 m in height, blocking the Niujuan stream and creating a barrier lake basin with 0.11 million m3 storage capacity. Subsequent to the Ninjuan landslide, debris flowshave been more active in Lianhuaxingou and Niujuan valleys because of the accumulated mass of debris.展开更多
Debris flow is a kind of geological hazard occurring in mountain areas.Its velocity is very important for debris flow dynamics research and designing debris flow control works.However,most of past researches focused o...Debris flow is a kind of geological hazard occurring in mountain areas.Its velocity is very important for debris flow dynamics research and designing debris flow control works.However,most of past researches focused on surface velocity and mean velocity of debris flow,while few researches involve its internal velocity because there is no available method for measuring the internal velocity for its destructive power.In this paper,a method of temporally correlated shear forces(TCSF) for meas-uring the internal velocity of debris flows is proposed.The principle of this method is to calculate the internal velocity of a debris flow using the distance between two detecting sections and the time differ-ence between the two waveforms of shear forces measured at both sections.This measuring method has been tested in 14 lab-based flume experiments.展开更多
This research is devoted to Taniashan Lake, a quake landslide-dammed lake, situated in Sichuan Pro- vince, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-di...This research is devoted to Taniashan Lake, a quake landslide-dammed lake, situated in Sichuan Pro- vince, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-dimensional hydrodynamic model of Russia was applied to simulate the process of two flood scenarios: 1, lake dam outbreak, and 2, dam overtopping. An artificial dam outbreak was made after the earthquake to lower the water level of the lake in 2008, which led to a great flood with a maximum water discharge of more than 6400 m3/s. The negative impact of the flood was reduced by a timely evacuation of the population. Flood hazards still remain in the event of new landslides into the lake and lake dam overtopping (Scenario 2), in which case a maximum water discharge at the dam crest would reach 5000 m3/s, placing the population of Shabacun and Shilingzi villages in the zone of flood impact.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40771026)the NSFC-RFBR project (Grant No. 40911120089, 08-05-92206 NSFCa)
文摘Measuring the internal velocity of debris flows is very important for debris flow dynamics research and designing debris flow control works. However, there is no appropriate method for measuring the internal velocity because of the destructive power of debris flow process. In this paper, we address this problem by using the relationship between velocity and kinetic pressure, as described by surface velocity and surface kinetic pressure data. Kinetic pressure is the difference of impact pressure and static pressure. The former is detected by force sensors installed in the flow direction at the sampling section. Observations show that static pressure can be computed using the formula for static water pressure by simply substituting water density for debris flow density. We describe the relationship between surface velocity and surface kinetic pressure using data from seven laboratory flume experiments. It is consistent with the relationship for single phase flow, which is the measurement principle of the Pitot tube.
基金supported by the NSFC-RFBR Projects (Nos. 40911120089, 08-05-92206 NSFCa)the Russian Leading Science Schools Programme (No. НШ-3405.2010.5)+1 种基金the Interna-tional Cooperation Project of the Ministry of Science and Technology of China (No. 2009DFR20620)the International Cooperation Project of the Department of Science and Technology of Sichuan Province (No. 2009HH0005)
文摘The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujnau (牛圈) Valley (named Niujuan landslide), close to the epicenter, is one that travelled a long distance with damaging consequences. Using QuickBird satellite images and GIS tools, the seismogenic mass movements are analyzed, and the movement phases, travel path, and post-catastrophic processes of Niujuan landslide are described and discussed. Image interpretation and a GPS survey showed that the mass movements denuded 37% of the research area. The Niujuan landslide moved 1 950 m along the Lianhuaxingou (莲花心沟) stream, transformed to a debris avalanche, and accumulated in the downstream bed of Niujuan Valley, where they formed a dam 30 m in height, blocking the Niujuan stream and creating a barrier lake basin with 0.11 million m3 storage capacity. Subsequent to the Ninjuan landslide, debris flowshave been more active in Lianhuaxingou and Niujuan valleys because of the accumulated mass of debris.
基金supported by the National Natural Science Foundation of China (No. 40771026)the NSFC-RFBR Project (Nos. 40911120089 and 08-05-92206 NSFCa)
文摘Debris flow is a kind of geological hazard occurring in mountain areas.Its velocity is very important for debris flow dynamics research and designing debris flow control works.However,most of past researches focused on surface velocity and mean velocity of debris flow,while few researches involve its internal velocity because there is no available method for measuring the internal velocity for its destructive power.In this paper,a method of temporally correlated shear forces(TCSF) for meas-uring the internal velocity of debris flows is proposed.The principle of this method is to calculate the internal velocity of a debris flow using the distance between two detecting sections and the time differ-ence between the two waveforms of shear forces measured at both sections.This measuring method has been tested in 14 lab-based flume experiments.
文摘This research is devoted to Taniashan Lake, a quake landslide-dammed lake, situated in Sichuan Pro- vince, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-dimensional hydrodynamic model of Russia was applied to simulate the process of two flood scenarios: 1, lake dam outbreak, and 2, dam overtopping. An artificial dam outbreak was made after the earthquake to lower the water level of the lake in 2008, which led to a great flood with a maximum water discharge of more than 6400 m3/s. The negative impact of the flood was reduced by a timely evacuation of the population. Flood hazards still remain in the event of new landslides into the lake and lake dam overtopping (Scenario 2), in which case a maximum water discharge at the dam crest would reach 5000 m3/s, placing the population of Shabacun and Shilingzi villages in the zone of flood impact.