Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC devi...Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC device elec-troluminescent(EL)efficiency contained a mistake,leading to an inaccurate quantity value.The device’s maxim-um EL efficiency constitutes not‘~120 klm/W’but‘4.3 lm/W’instead.Correction details are listed below.展开更多
Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we deve...Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm.展开更多
Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores ...Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores of super-Earths,and at microscales—damage to ceramic materials and high-pressure plastic transformation and phase transitions in solids.Under dynamic compression of solids up to Mbar pressures,even a solid with high strength exhibits plastic properties,causing the induced shock wave to split in two:an elastic precursor and a plastic shock wave.This phenomenon is described by theoretical models based on indirect measurements of material response.The advent of x-ray free-electron lasers(XFELs)has made it possible to use their ultrashort pulses for direct observations of the propagation of shock waves in solid materials by the method of phase-contrast radiography.However,there is still a lack of comprehensive data for verification of theoretical models of different solids.Here,we present the results of an experiment in which the evolution of the coupled elastic-plastic wave structure in diamond was directly observed and studied with submicrometer spatial resolution,using the unique capabilities of the x-ray free-electron laser(XFEL).The direct measurements allowed,for the first time,the fitting and validation of the 2D failure model for diamond in the range of several Mbar.Our experimental approach opens new possibilities for the direct verification and construction of equations of state of matter in the ultra-high-stress range,which are relevant to solving a variety of problems in high-energy-density physics.展开更多
Synthetic perovskites with photovoltaic properties open a new era in solar photovoltaics. Due to high optical absorption perovskite-based thin-film solar cells are usually considered as fully absorbing solar radiation...Synthetic perovskites with photovoltaic properties open a new era in solar photovoltaics. Due to high optical absorption perovskite-based thin-film solar cells are usually considered as fully absorbing solar radiation on condition of ideal blooming. However, it is not really so. The analysis of the literature data has shown that the absorbance of all photovoltaic pervoskites has the spectral hole at infrared frequencies where the solar radiation spectrum has a small local peak. This absorption dip results in the decrease of the optical efficiency of thin-film pervoskite solar cells and closes the ways of utilising them at this range for any other applications. In our work we show that to cure this shortage is possible complementing the basic structure by an inexpensive plasmonic array.展开更多
The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be...The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).展开更多
This article describes an alternative approach to the problem of AIDS. The author proposes a new theory. In this theory, HIV is not a “classic virus”, but a parasitic program that does not have a material carrier.
This article described the opening of a new law in fundamental physics, namely the law of the formation of an endless series of suspension (cable-stayed) networks coatings. Opening relates to the mechanics, section of...This article described the opening of a new law in fundamental physics, namely the law of the formation of an endless series of suspension (cable-stayed) networks coatings. Opening relates to the mechanics, section of statics.展开更多
Electric field is a powerful instrument in nanoscale engineering,providing wide functionalities for control in various optical and solid-state nanodevices.The development of a single optically resonant nanostructure o...Electric field is a powerful instrument in nanoscale engineering,providing wide functionalities for control in various optical and solid-state nanodevices.The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging,but it could be extremely useful for novel nanophotonic horizons.Here,we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation.We study this field experimentally,probing it by second-harmonic generation signal,which,in our system,is time-dependent and has a non-quadratic signal/excitation power dependence.The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal.We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field.We estimate the value of optically-generated static electric field in this nanoantenna to achieve≈10^(8)V/m.These findings pave the way for the creation of nanoantenna-based optical memory,programmable logic and neuromorphic devices.展开更多
文摘Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC device elec-troluminescent(EL)efficiency contained a mistake,leading to an inaccurate quantity value.The device’s maxim-um EL efficiency constitutes not‘~120 klm/W’but‘4.3 lm/W’instead.Correction details are listed below.
基金M.Baeva,A.Vorobyov,V.Neplokh acknowledge the Russian Science Foundation No.22-79-10286(https://rscf.ru/project/22-79-10286/)for supporting silicon substrate processing.D.Gets,APolushkin and S.Makarov acknowledge the Ministry of Science and Higher Education of the Russian Federation(Project 075-15-2021-589)for supporting perovskite synthesisA.G.Nasibulin and D.V.Krasnikov acknowledge the Russian Science Foundation(grant No.20-73-10256)for supporting synthesis of SWCNTs.
文摘Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture.Here,we develop a perovskite electrochemical cell both for light emission and detection,where the active layer consists of a composite material made of halide perovskite microcrystals,polymer support matrix,and added mobile ions.The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition,emitting light at the wavelength of 523 nm,yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 4.3 lm/W.The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40%lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates.Moreover,the device operates as a photodetector with a sensitivity up to 0.75 A/W,specific detectivity of 8.56×1011 Jones,and linear dynamic range of 48 dB.The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50μm.
基金We thank the technical staff of SACLA for their support during the experiment.The experiment was performed at BL3 of SACLA with the approval of the Japan Synchrotron Radiation Research Institute(Proposal Nos.2021A8004 and 2021B8002).The high-power drive laser installed in SACLA EH5 was developed with the cooperation of Hamamatsu Photonics.The installation of diffractive optical elements to improve the smoothness of the drive laser-pattern was supported by the SACLA Basic Development ProgramThe work was carried out with the financial support of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation(Grant No.075-15-2021-1352)This work was supported by KAKENHI(Grant Nos.17K05729 and 21K03499)from the Japan Society for the Promotion of Science(JSPS).
文摘Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores of super-Earths,and at microscales—damage to ceramic materials and high-pressure plastic transformation and phase transitions in solids.Under dynamic compression of solids up to Mbar pressures,even a solid with high strength exhibits plastic properties,causing the induced shock wave to split in two:an elastic precursor and a plastic shock wave.This phenomenon is described by theoretical models based on indirect measurements of material response.The advent of x-ray free-electron lasers(XFELs)has made it possible to use their ultrashort pulses for direct observations of the propagation of shock waves in solid materials by the method of phase-contrast radiography.However,there is still a lack of comprehensive data for verification of theoretical models of different solids.Here,we present the results of an experiment in which the evolution of the coupled elastic-plastic wave structure in diamond was directly observed and studied with submicrometer spatial resolution,using the unique capabilities of the x-ray free-electron laser(XFEL).The direct measurements allowed,for the first time,the fitting and validation of the 2D failure model for diamond in the range of several Mbar.Our experimental approach opens new possibilities for the direct verification and construction of equations of state of matter in the ultra-high-stress range,which are relevant to solving a variety of problems in high-energy-density physics.
文摘Synthetic perovskites with photovoltaic properties open a new era in solar photovoltaics. Due to high optical absorption perovskite-based thin-film solar cells are usually considered as fully absorbing solar radiation on condition of ideal blooming. However, it is not really so. The analysis of the literature data has shown that the absorbance of all photovoltaic pervoskites has the spectral hole at infrared frequencies where the solar radiation spectrum has a small local peak. This absorption dip results in the decrease of the optical efficiency of thin-film pervoskite solar cells and closes the ways of utilising them at this range for any other applications. In our work we show that to cure this shortage is possible complementing the basic structure by an inexpensive plasmonic array.
基金The results of Project LQ1606 were obtained with the financial support of the Ministry of Education,Youths and Sports as part of targeted support from the National Programme of Sustainability II.This research was also sponsored by the Czech Science Foundation(Project No.18-09560S)by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15_003/0000449)from the European Regional Development Fund(HIFI),by the project on Advanced Research Using High Intensity Laser Produced Photons and Particles(No.CZ.02.1.01/0.0/0.0/16019/0000789)from the European Regional Development Fund(ADONIS)+1 种基金by theMinistry of Education and Science of the Russian Federation under Contract No.14.Z50.31.0007.The work was also supported by the Ministry of Education and Science of the Russian Federation(FTP Grant#14.607.21.0196,Project ID:RFMEFI60717X0196)The work of JIHT RAS team on X-ray measurements and analysis was done with financial support fromthe Russian Science Foundation(Grant#14-50-00124).
文摘The design of ellipsoidal plasma mirrors(EPMs)for the PEARL laser facility is presented.The EPMs achieve a magnification of 0.32 in focal spot size,and the corresponding increase in focused intensity is expected to be about 8.Designing and implementing such focusing optics for short-pulse(<100 fs)systems paves the way for their use in future high-power facilities,where they can be used to achieve intensities beyond 1023W/cm^(2).A retro-imaging-based target alignment system is also described,which is used to align solid targets at the output of the ellispoidal mirrors(with a numerical aperture of 0.75 in this case).
文摘This article describes an alternative approach to the problem of AIDS. The author proposes a new theory. In this theory, HIV is not a “classic virus”, but a parasitic program that does not have a material carrier.
文摘This article described the opening of a new law in fundamental physics, namely the law of the formation of an endless series of suspension (cable-stayed) networks coatings. Opening relates to the mechanics, section of statics.
基金This research was supported by Priority 2030 Federal Academic Leadership Program,the lithography fabrication of the hybrid nanostructures,studies of linear and nonlinear optical properties were supported by the Russian Science Foundation(Project No.22-72-10035,https://rscf.ru/project/22-72-10035/)the studies of the metal-semiconductor interface of the nanoantenna were supported by the Ministry of Science and Higher Education of the Russian Federation(Project No.075‐15‐2021‐592).
文摘Electric field is a powerful instrument in nanoscale engineering,providing wide functionalities for control in various optical and solid-state nanodevices.The development of a single optically resonant nanostructure operating with a charge-induced electrical field is challenging,but it could be extremely useful for novel nanophotonic horizons.Here,we show a resonant metal-semiconductor nanostructure with a static electric field created at the interface between its components by charge carriers generated via femtosecond laser irradiation.We study this field experimentally,probing it by second-harmonic generation signal,which,in our system,is time-dependent and has a non-quadratic signal/excitation power dependence.The developed numerical models reveal the influence of the optically induced static electric field on the second harmonic generation signal.We also show how metal work function and silicon surface defect density for different charge carrier concentrations affect the formation of this field.We estimate the value of optically-generated static electric field in this nanoantenna to achieve≈10^(8)V/m.These findings pave the way for the creation of nanoantenna-based optical memory,programmable logic and neuromorphic devices.