In this work an algorithm to predict short times series with missing data by means energy associated of series using artificial neural networks (ANN) is presented. In order to give the prediction one step ahead, a com...In this work an algorithm to predict short times series with missing data by means energy associated of series using artificial neural networks (ANN) is presented. In order to give the prediction one step ahead, a comparison between this and previous work that involves a similar approach to test short time series with uncertainties on their data, indicates that a linear smoothing is a well approximation in order to employ a method for uncompleted datasets. Moreover, in function of the long- or short-term stochastic dependence of the short time series considered, the training process modifies the number of patterns and iterations in the topology according to a heuristic law, where the Hurst parameter H is related with the short times series, of which they are considered as a path of the fractional Brownian motion. The results are evaluated on high roughness time series from solutions of the Mackey-Glass Equation (MG) and cumulative monthly historical rainfall data from San Agustin, Cordoba. A comparison with ANN nonlinear filters is shown in order to see a better performance of the outcomes when the information is taken from geographical point observation.展开更多
基金supported by Universidad Nacional de Córdoba(UNC),FONCYT-PDFT PRH No.3(UNC Program RRHH03),SECYT UNC,Universidad Nacional de San Juan—Institute of Automatics(INAUT),National Agency for Scientific and Technological Promotion(ANPCyT)and Departments of Electronics—Electrical and Electronic Engineering—Universidad Nacional of Cordoba.
文摘In this work an algorithm to predict short times series with missing data by means energy associated of series using artificial neural networks (ANN) is presented. In order to give the prediction one step ahead, a comparison between this and previous work that involves a similar approach to test short time series with uncertainties on their data, indicates that a linear smoothing is a well approximation in order to employ a method for uncompleted datasets. Moreover, in function of the long- or short-term stochastic dependence of the short time series considered, the training process modifies the number of patterns and iterations in the topology according to a heuristic law, where the Hurst parameter H is related with the short times series, of which they are considered as a path of the fractional Brownian motion. The results are evaluated on high roughness time series from solutions of the Mackey-Glass Equation (MG) and cumulative monthly historical rainfall data from San Agustin, Cordoba. A comparison with ANN nonlinear filters is shown in order to see a better performance of the outcomes when the information is taken from geographical point observation.