Copper, in turn, is the most useful material in the field of electricity, especially in electrical contacts. Already, the zinc is the most useful metal in atmospheric exposure conditions which is used in sheet form as...Copper, in turn, is the most useful material in the field of electricity, especially in electrical contacts. Already, the zinc is the most useful metal in atmospheric exposure conditions which is used in sheet form as castings, but whose most important application is as a coating for corrosion protection of steel structures. Salvador, it has disadvantages as an environment conducive to corrosion, by setting up a wet surface time t4, high corrosive environment (C4). This work was proposed to study the performance of these metals compared to the effects of air pollution of an industrial site. For both atmospheric corrosion sites (ACS) were implanted natural weathering standard in order to assess the aggressiveness of atmospheric contaminants on the performance of metal specimens (galvanized steel and copper). In determining their corrosion rates which were analyzed for sulfate and chloride ions, atmospheric, given the proximity of this ACS to the seafront, due to these propitiate the acceleration of corrosion. The results allowed observation that the average local concentration of the sulfate was higher than the chloride, because of the proximity of the pollutant source, and that the corrosion rate of galvanized steel was more significant than 61.5% of copper.展开更多
文摘Copper, in turn, is the most useful material in the field of electricity, especially in electrical contacts. Already, the zinc is the most useful metal in atmospheric exposure conditions which is used in sheet form as castings, but whose most important application is as a coating for corrosion protection of steel structures. Salvador, it has disadvantages as an environment conducive to corrosion, by setting up a wet surface time t4, high corrosive environment (C4). This work was proposed to study the performance of these metals compared to the effects of air pollution of an industrial site. For both atmospheric corrosion sites (ACS) were implanted natural weathering standard in order to assess the aggressiveness of atmospheric contaminants on the performance of metal specimens (galvanized steel and copper). In determining their corrosion rates which were analyzed for sulfate and chloride ions, atmospheric, given the proximity of this ACS to the seafront, due to these propitiate the acceleration of corrosion. The results allowed observation that the average local concentration of the sulfate was higher than the chloride, because of the proximity of the pollutant source, and that the corrosion rate of galvanized steel was more significant than 61.5% of copper.