This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ...Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.展开更多
This paper presents a new numerical technique for solving initial and bound-ary value problems with unsteady strongly nonlinear advection diffusion reaction(ADR)equations.The method is based on the use of the radial b...This paper presents a new numerical technique for solving initial and bound-ary value problems with unsteady strongly nonlinear advection diffusion reaction(ADR)equations.The method is based on the use of the radial basis functions(RBF)for the approximation space of the solution.The Crank-Nicolson scheme is used for approximation in time.This results in a sequence of stationary nonlinear ADR equations.The equations are solved sequentially at each time step using the proposed semi-analytical technique based on the RBFs.The approximate solution is sought in the form of the analytical expansion over basis functions and contains free parameters.The basis functions are constructed in such a way that the expansion satisfies the boundary conditions of the problem for any choice of the free parameters.The free parameters are determined by substitution of the expansion in the equation and collocation in the solution domain.In the case of a nonlinear equation,we use the well-known procedure of quasilinearization.This transforms the original equation into a sequence of the linear ones on each time layer.The numerical examples confirm the high accuracy and robustness of the proposed numerical scheme.展开更多
The aim of this paper is to present the backward substitution method for solving a class of fractional dual-phase-lag models of heat transfer.The proposed method is based on the Fourier series expansion along the spat...The aim of this paper is to present the backward substitution method for solving a class of fractional dual-phase-lag models of heat transfer.The proposed method is based on the Fourier series expansion along the spatial coordinate over the orthonormal basis formed by the eigenfunctions of the corresponding Sturm-Liouville problem.This Fourier expansion of the solution transforms the original fractional par-tial differential equation into a sequence of multi-term fractional ordinary differential equations.These fractional equations are solved by the use of the backward substi-tution method.The numerical examples with temperature-jump boundary condition and parameters of the tissue confirm the high accuracy and efficiency of the proposed numerical scheme.展开更多
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
基金the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.
基金supported by the Fundamental Research Funds for the Central Universities(No.2018B16714)the National Natural Science Foundation of China(Nos.11702083,11572111,51679150,51579153,51739008,51527811)+5 种基金the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-0218G01)the China Postdoctoral Science Foundation(No.2017M611669)the China Postdoctoral Science Special Foundation(No.2018T110430)the Postdoctoral Foundation of Jiangsu Province(No.1701059C)the National Key R&D Program of China(No.2016YFC0401902)the Fund Project of NHRI(Nos.Y417002,Y417015).
文摘This paper presents a new numerical technique for solving initial and bound-ary value problems with unsteady strongly nonlinear advection diffusion reaction(ADR)equations.The method is based on the use of the radial basis functions(RBF)for the approximation space of the solution.The Crank-Nicolson scheme is used for approximation in time.This results in a sequence of stationary nonlinear ADR equations.The equations are solved sequentially at each time step using the proposed semi-analytical technique based on the RBFs.The approximate solution is sought in the form of the analytical expansion over basis functions and contains free parameters.The basis functions are constructed in such a way that the expansion satisfies the boundary conditions of the problem for any choice of the free parameters.The free parameters are determined by substitution of the expansion in the equation and collocation in the solution domain.In the case of a nonlinear equation,we use the well-known procedure of quasilinearization.This transforms the original equation into a sequence of the linear ones on each time layer.The numerical examples confirm the high accuracy and robustness of the proposed numerical scheme.
基金The work was supported by the Natural Science Foundation of China(No.12072103)the Fundamental Research Funds for the Central Universities(No.B200202126)+4 种基金the Natural Science Foundation of Jiangsu Province(No.BK20190073)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(No.SKLA202001)the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(No.KF2020-22)the Key Laboratory of Intelligent Materials and Structural Mechanics of Hebei Province(No.KF2021-01)the China Postdoctoral Science Foundation(Nos.2017M611669 and 2018T110430).
文摘The aim of this paper is to present the backward substitution method for solving a class of fractional dual-phase-lag models of heat transfer.The proposed method is based on the Fourier series expansion along the spatial coordinate over the orthonormal basis formed by the eigenfunctions of the corresponding Sturm-Liouville problem.This Fourier expansion of the solution transforms the original fractional par-tial differential equation into a sequence of multi-term fractional ordinary differential equations.These fractional equations are solved by the use of the backward substi-tution method.The numerical examples with temperature-jump boundary condition and parameters of the tissue confirm the high accuracy and efficiency of the proposed numerical scheme.