期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage 被引量:3
1
作者 Dong-Wan Kang Chi Kyung kim +8 位作者 Han-Gil Jeong Min Soh Taeho kim In-Young Choi seui-ki ki Do Yeon kim Wookjin Yang Taeghwan Hyeon Seung-Hoon Lee 《Nano Research》 SCIE EI CAS CSCD 2017年第8期2743-2760,共18页
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with a high mortality rate, for which there currently is no effective treatment. A perihematomal edema caused by an intense inflammatory reaction is ... Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with a high mortality rate, for which there currently is no effective treatment. A perihematomal edema caused by an intense inflammatory reaction is more deleterious than the hematoma itself and can result in neurological deterioration and death. Ceria nanoparticles (CeNPs) are potent free radical scavengers with potential for biomedical applications. As oxidative stress plays a major role in post-ICH inflammation, we hypothesized that CeNPs might protect against ICH. To test this hypothesis, core CeNPs were synthesized using a modified reverse micelle method and covered with phospholipid-polyethylene glycol (PEG) to achieve biocompatibility. We investigated whether our custom-made biocompatible CeNPs have protective effects against ICH. The CeNPs reduced oxidative stress, hemin-induced cytotoxicity, and inflammation in vitro. In a rodent ICH model, intravenously administered CeNPs were mainly distributed in the hemorrhagic hemisphere, suggesting that they could diffuse through the damaged blood-brain barrier. Moreover, CeNPs attenuated microglia/macrophage recruitment around the hemorrhagic lesion and inflammatory protein expression. Finally, CeNP treatment reduced the brain edema by 68.4% as compared to the control. These results reveal the great potential of CeNPs as a novel therapeutic agent for patients with ICH. 展开更多
关键词 ceria nanoparticles intracerebral hemorrhage free radical injury ANTI-INFLAMMATION neuroprotective agents biomedical application
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部