We explore new asymptotic-numeric solvers for partial differential equations with highly oscillatory forcing terms. Such methods represent the solution as an asymptotic series, whose terms can be evaluated by solving ...We explore new asymptotic-numeric solvers for partial differential equations with highly oscillatory forcing terms. Such methods represent the solution as an asymptotic series, whose terms can be evaluated by solving non-oscillatory problems and they guarantee high accuracy at a low computational cost. We consider two forms of oscillatory forcing terms, namely when the oscillation is in time or in space: each lends itself to different treatment. Numerical examples highlight the salient features of the new approach.展开更多
文摘We explore new asymptotic-numeric solvers for partial differential equations with highly oscillatory forcing terms. Such methods represent the solution as an asymptotic series, whose terms can be evaluated by solving non-oscillatory problems and they guarantee high accuracy at a low computational cost. We consider two forms of oscillatory forcing terms, namely when the oscillation is in time or in space: each lends itself to different treatment. Numerical examples highlight the salient features of the new approach.