The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst suppo...The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst support to replace the existing expensive ones. The aim of the present research is to prepare new metal-immobilized complexes based on rice husks and to study their catalytic activity in the oxidation of cyclohexene with tert-butylhydroperoxide. The corresponding metal complexes were obtained by interaction of RRH (raw rice husks) or thermally treated WRHA in air atmosphere. The complexes were obtained from aqueous solutions of various salts such as FeCl2.4H2O, COCl2.6H2O, VOSO4.5H2O and Na2MoO4.2H2O at room temperature. The rice husks-supported metal complexes were identified by infrared spectroscopy. The structure of the iron-containing polymeric materials was evaluated by Mossbauer spectroscopy. The catalytic activity of the molybdenum-containing complex catalyst in the principal epoxidation reaction was higher than that of the vanadium-containing one, whereas, the opposite order of activities was found for the side reaction of allylic hydroxylation of cyclohexene. Under selected reaction conditions, the yields of the principal reaction products cyclohexene oxide (1,2-epoxycyclohexane) and 2-cyclohexene-1-ol were 36.4% and 22.7%, respectively.展开更多
Studies were carried out to determine the activity of complexes of the essential amino acids DL-Lysine and L-Methionine with heavy metals in the oxidation of cyclohexene with tert-butylhydroperoxide in toluene at 80...Studies were carried out to determine the activity of complexes of the essential amino acids DL-Lysine and L-Methionine with heavy metals in the oxidation of cyclohexene with tert-butylhydroperoxide in toluene at 80°C. All complexes were prepared through interaction of metal ions and DL-Lysine and L-Methionine at room temperature in aqueous solutions. Only the complexes of Mo and W were obtained from acidic aqueous solution. These complexes were characterized by FT-IR, Moessbauer spectroscopy and EPR analysis. The products of the oxidation reactions were identified by GC/MS analysis. The complexes of Mo and V showed the best activity in the epoxidation reaction of cyclohexene in comparison with other complexes, such as Ni, Mn, Zn, Co, Cu, Cr, Fe and W. Using semi-empirical quantum-chemistry methods, the full energy of the Mo complexes was calculated and their probable structure is presented.展开更多
文摘The cheap raw rice husks and the products of their thermal degradation WRHA (white rice husk ash) and BRHA (black rice husk ash), after vigorously grounding and mixing, can successfully be used as a catalyst support to replace the existing expensive ones. The aim of the present research is to prepare new metal-immobilized complexes based on rice husks and to study their catalytic activity in the oxidation of cyclohexene with tert-butylhydroperoxide. The corresponding metal complexes were obtained by interaction of RRH (raw rice husks) or thermally treated WRHA in air atmosphere. The complexes were obtained from aqueous solutions of various salts such as FeCl2.4H2O, COCl2.6H2O, VOSO4.5H2O and Na2MoO4.2H2O at room temperature. The rice husks-supported metal complexes were identified by infrared spectroscopy. The structure of the iron-containing polymeric materials was evaluated by Mossbauer spectroscopy. The catalytic activity of the molybdenum-containing complex catalyst in the principal epoxidation reaction was higher than that of the vanadium-containing one, whereas, the opposite order of activities was found for the side reaction of allylic hydroxylation of cyclohexene. Under selected reaction conditions, the yields of the principal reaction products cyclohexene oxide (1,2-epoxycyclohexane) and 2-cyclohexene-1-ol were 36.4% and 22.7%, respectively.
文摘Studies were carried out to determine the activity of complexes of the essential amino acids DL-Lysine and L-Methionine with heavy metals in the oxidation of cyclohexene with tert-butylhydroperoxide in toluene at 80°C. All complexes were prepared through interaction of metal ions and DL-Lysine and L-Methionine at room temperature in aqueous solutions. Only the complexes of Mo and W were obtained from acidic aqueous solution. These complexes were characterized by FT-IR, Moessbauer spectroscopy and EPR analysis. The products of the oxidation reactions were identified by GC/MS analysis. The complexes of Mo and V showed the best activity in the epoxidation reaction of cyclohexene in comparison with other complexes, such as Ni, Mn, Zn, Co, Cu, Cr, Fe and W. Using semi-empirical quantum-chemistry methods, the full energy of the Mo complexes was calculated and their probable structure is presented.