Multiobjective Programming (MOP) has become famous among many researchers due to more practical and realistic applications. A lot of methods have been proposed especially during the past four decades. In this paper, w...Multiobjective Programming (MOP) has become famous among many researchers due to more practical and realistic applications. A lot of methods have been proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP by starting from a utopian point, which is usually infeasible, and moving towards the feasible region via stepwise movements and a simple continuous interaction with decision maker. We consider the case where all objective functions and constraints are linear. The implementation of the pro-posed algorithm is demonstrated by two numerical examples.展开更多
We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ...We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.展开更多
We develop a multi-objective model in a multi-product inventory system.The proposed model is a joint replenishment problem(JRP) that has two objective functions.The first one is minimization of total ordering and inve...We develop a multi-objective model in a multi-product inventory system.The proposed model is a joint replenishment problem(JRP) that has two objective functions.The first one is minimization of total ordering and inventory holding costs,which is the same objective function as the classic JRP.To increase the applicability of the proposed model,we suppose that transportation cost is independent of time,is not a part of holding cost,and is calculated based on the maximum of stored inventory,as is the case in many real inventory problems.Thus,the second objective function is minimization of total transportation cost.To solve this problem three efficient algorithms are proposed.First,the RAND algorithm,called the best heuristic algorithm for solving the JRP,is modified to be applicable for the proposed problem.A multi-objective genetic algorithm(MOGA) is developed as the second algorithm to solve the problem.Finally,the model is solved by a new algorithm that is a combination of the RAND algorithm and MOGA.The performances of these algorithms are then compared with those of the previous approaches and with each other,and the findings imply their ability in finding Pareto optimal solutions to 3200 randomly produced problems.展开更多
文摘Multiobjective Programming (MOP) has become famous among many researchers due to more practical and realistic applications. A lot of methods have been proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP by starting from a utopian point, which is usually infeasible, and moving towards the feasible region via stepwise movements and a simple continuous interaction with decision maker. We consider the case where all objective functions and constraints are linear. The implementation of the pro-posed algorithm is demonstrated by two numerical examples.
文摘We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.
文摘We develop a multi-objective model in a multi-product inventory system.The proposed model is a joint replenishment problem(JRP) that has two objective functions.The first one is minimization of total ordering and inventory holding costs,which is the same objective function as the classic JRP.To increase the applicability of the proposed model,we suppose that transportation cost is independent of time,is not a part of holding cost,and is calculated based on the maximum of stored inventory,as is the case in many real inventory problems.Thus,the second objective function is minimization of total transportation cost.To solve this problem three efficient algorithms are proposed.First,the RAND algorithm,called the best heuristic algorithm for solving the JRP,is modified to be applicable for the proposed problem.A multi-objective genetic algorithm(MOGA) is developed as the second algorithm to solve the problem.Finally,the model is solved by a new algorithm that is a combination of the RAND algorithm and MOGA.The performances of these algorithms are then compared with those of the previous approaches and with each other,and the findings imply their ability in finding Pareto optimal solutions to 3200 randomly produced problems.