The structural characteristics are investigated of nanoheterogeneous films comprising ZnO, In2 O3 and ZnO + In2 O3 composite produced by aerosol spray pyrolysis technique (SPT). The process utilizes water solutions of...The structural characteristics are investigated of nanoheterogeneous films comprising ZnO, In2 O3 and ZnO + In2 O3 composite produced by aerosol spray pyrolysis technique (SPT). The process utilizes water solutions of zinc chloride and indium nitrate precursors. The X-ray diffraction data show that the SPT process results in polycrystalline films of hexagonal wurtzite type ZnO, and In2 O3 crystals of cubic structure. SPT-synthesized ZnO + In2 O3composites contain mixtures of these crystals. The morphology of the synthesized films is studied by scanning electron microscopy as well as the dependence of morphology on the synthesis conditions, specifically the temperature of the aerosol precipitation and the concentration of the precursors in solutions. The characteristics of nucleation and growth of oxide crystals during the synthesis of ZnO + In2 O3 composite films are also considered. The film with the composition 25 wt% ZnO + 75 wt% In2 O3 contains a large number of small crystal aggregates of arbitrary shape with a high density of contacts between the aggregates and are characterized by a homogeneous structure with high dispersion. Such morphology has high specific surface, which favors high sensory response. In addition, in this range of aggregate composition the relationship between the particles of the catalytically active component- ZnO, cleavage of hydrogen molecule, and In2 O3particles with a high concentration of conduction electrons is close to optimal for the maximum sensory effect in the detection of hydrogen.展开更多
文摘The structural characteristics are investigated of nanoheterogeneous films comprising ZnO, In2 O3 and ZnO + In2 O3 composite produced by aerosol spray pyrolysis technique (SPT). The process utilizes water solutions of zinc chloride and indium nitrate precursors. The X-ray diffraction data show that the SPT process results in polycrystalline films of hexagonal wurtzite type ZnO, and In2 O3 crystals of cubic structure. SPT-synthesized ZnO + In2 O3composites contain mixtures of these crystals. The morphology of the synthesized films is studied by scanning electron microscopy as well as the dependence of morphology on the synthesis conditions, specifically the temperature of the aerosol precipitation and the concentration of the precursors in solutions. The characteristics of nucleation and growth of oxide crystals during the synthesis of ZnO + In2 O3 composite films are also considered. The film with the composition 25 wt% ZnO + 75 wt% In2 O3 contains a large number of small crystal aggregates of arbitrary shape with a high density of contacts between the aggregates and are characterized by a homogeneous structure with high dispersion. Such morphology has high specific surface, which favors high sensory response. In addition, in this range of aggregate composition the relationship between the particles of the catalytically active component- ZnO, cleavage of hydrogen molecule, and In2 O3particles with a high concentration of conduction electrons is close to optimal for the maximum sensory effect in the detection of hydrogen.