期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Kerosene-alumina nanofluid flow and heat transfer for cooling application 被引量:9
1
作者 M.Mahmoodi sh.kandelousi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期983-990,共8页
Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytical... Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytically using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are determined analytically. The influence of pertinent parameters such as magnetic parameter, nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. Results indicate that skin friction coefficient decreases with increase of magnetic parameter, nanofluid volume fraction and viscosity parameter. Nusselt number increases with increase of magnetic parameter and nanofluid volume fraction while it decreases with increase of Eckert number and viscosity parameter. 展开更多
关键词 流体流动 纳米流体 氧化铝 煤油 NUSSELT数 常微分方程 应用 冷却
下载PDF
Cooling process of liquid propellant rocket by means of kerosene-alumina nanofluid
2
作者 Mostafa Mahmoodi sh.kandelousi 《Propulsion and Power Research》 SCIE 2016年第4期279-286,共8页
Heat transfer augmentation of kerosene-alumina nanofluid is studied for the possible use in the regenerative cooling channel of semi cryogenic engine.The basic partial differential equations are reduced to oidinary di... Heat transfer augmentation of kerosene-alumina nanofluid is studied for the possible use in the regenerative cooling channel of semi cryogenic engine.The basic partial differential equations are reduced to oidinary differential equations which are solved using differential transformation method.Velocity and temperature profiles as well as the skin friction coefficient and Nusselt number are determined.The influence of pertinent parameters such as nanofluid volume fraction,viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed.Tbe results indicate that adding alumina into the fuel of liquid rocket engine(kerosene)can be considered as the way of enhancing cooling process of chamber and nozzle walls.Nusselt number is an increasing function of viscosity parameter and nanoparticle volume fraction while it is a decreasing Junction of Eckert number. 展开更多
关键词 Liquid propellant rocket KEROSENE ALUMINA NANOFLUID Heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部