The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse ele...The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.展开更多
One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for ...One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for 5 h. The nanocrystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. XRD patterns indicate that both Na2S and elemental sulfur as the sulfur precursor result in CdS nanorods with wutzite phase (hexagonal structure). SEM and TEM images show that diameter of CdS nanorods can be decreased using Na2S instead of elemental sulfur. For the growth of CdS nanorods, a mechanism has been proposed. Uv-Vis absorption of CdS nanorods (sulfur precursor: Na2S) was shown blue shift to 485 nm due to the quantum size effect.展开更多
In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the m...In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the morphology and structure of TiO2 nanorods has been investigated. The prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing to 400-700℃ up to 2 h.展开更多
文摘The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds.
文摘One-dimensional CdS nanocrystals have been prepared by solvothermal method using cadmium acetate as a cadmium precursor, elemental sulfur and Na2S, as a sulfur precursor, and ethylenediamine as a solvent at 150℃ for 5 h. The nanocrystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Vis absorption spectroscopy. XRD patterns indicate that both Na2S and elemental sulfur as the sulfur precursor result in CdS nanorods with wutzite phase (hexagonal structure). SEM and TEM images show that diameter of CdS nanorods can be decreased using Na2S instead of elemental sulfur. For the growth of CdS nanorods, a mechanism has been proposed. Uv-Vis absorption of CdS nanorods (sulfur precursor: Na2S) was shown blue shift to 485 nm due to the quantum size effect.
文摘In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the morphology and structure of TiO2 nanorods has been investigated. The prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing to 400-700℃ up to 2 h.