BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which...BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.展开更多
BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China.However,current studies focus on antimicrobial and anticoagulation agents rather than tumors.The molecular identities of antihepatoma...BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China.However,current studies focus on antimicrobial and anticoagulation agents rather than tumors.The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated.It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines.AIM To purify,characterize,and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism.METHODS An antihepatoma peptide(scolopentide)was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis,a Sephadex G-25 column,and two steps of high-performance liquid chromatography(HPLC).Additionally,the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity.The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry(QTOF MS),and the sequence was matched by using the Mascot search engine.Based on the sequence and molecular weight,scolopentide was synthesized using solid-phase peptide synthesis methods.The synthetic scolopentide was confirmed by MS and HPLC.The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro.The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo.In the tumor xenograft experiments,qualified model mice(male 5-week-old BALB/c nude mice)were randomly divided into 2 groups(n=6):The scolopentide group(0.15 mL/d,via intraperitoneal injection of synthetic scolopentide,500 mg/kg/d)and the vehicle group(0.15 mL/d,via intraperitoneal injection of normal saline).The mice were euthanized by cervical dislocation after 14 d of continuous treatment.Mechanistically,flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro.A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro.CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro.Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4(DR4)and DR5.qRT-PCR was used to measure the mRNA expression of DR4,DR5,fas-associated death domain protein(FADD),Caspase-8,Caspase-3,cytochrome c(Cyto-C),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1βconverting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice.Western blot assays were used to measure the protein expression of DR4,DR5,FADD,Caspase-8,Caspase-3,and Cyto-C in the tumor tissues.The reactive oxygen species(ROS)of tumor tissues were tested.RESULTS In the process of purification,characterization and synthesis of scolopentide,the optimal enzymatic hydrolysis conditions(extract ratio:5.86%,IC_(50):0.310 mg/mL)were as follows:Trypsin at 0.1 g(300 U/g,centipede-trypsin ratio of 20:1),enzymolysis temperature of 46°C,and enzymolysis time of 4 h,which was superior to freeze-thawing with liquid nitrogen(IC_(50):3.07 mg/mL).A peptide with the strongest antihepatoma activity(scolopentide)was further purified through a Sephadex G-25 column(obtained A2)and two steps of HPLC(obtained B5 and C3).The molecular weight of the extracted scolopentide was 1018.997 Da,and the peptide sequence was RAQNHYCK,as characterized by QTOF MS and Mascot.Scolopentide was synthesized in vitro with a qualified molecular weight(1018.8 Da)and purity(98.014%),which was characterized by MS and HPLC.Extracted scolopentide still had an antineoplastic effect in vitro,which inhibited the proliferation of Eca-109(IC_(50):76.27μg/mL),HepG2(IC_(50):22.06μg/mL),and A549(IC_(50):35.13μg/mL)cells,especially HepG2 cells.Synthetic scolopentide inhibited the proliferation of HepG2 cells(treated 6,12,and 24 h)in a concentration-dependent manner in vitro,and the inhibitory effects were the strongest at 12 h(IC_(50):208.11μg/mL).Synthetic scolopentide also inhibited the tumor volume(Vehicle vs Scolopentide,P=0.0003)and weight(Vehicle vs Scolopentide,P=0.0022)in the tumor xenograft experiment.Mechanistically,flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01%(0μg/mL),12.13%(10μg/mL),16.52%(20μg/mL),and 23.20%(40μg/mL).Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro.The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells.Molecular docking suggested that scolopentide tightly bound to DR4 and DR5,and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol,respectively.In subcutaneous xenograft tumors from mice,quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD,caspase-8 and caspase-3 through a mitochondria-independent pathway.CONCLUSION Scolopentide,an antihepatoma peptide purified from centipedes,may inspire new antihepatoma agents.Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.展开更多
BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether fr...BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma(HCC)is unknown,and the potential molecular mechanism(s)has not yet been determined.AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.METHODS In the present study,which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(http://tcmspw.com/tcmsp.php),Universal Protein database(http://www.uniprot.org),GeneCards:The Human Gene Database(http://www.genecards.org/)and Comparative Toxicogenomics Database(http://www.ctdbase.org/),the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted.The core prediction targets were screened by molecular docking.In vivo,SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model,and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d.The tumors were collected and evaluated:the tumor volume and growth rate were gauged to evaluate tumor growth;hematoxylineosin staining was performed to estimate histopathological changes;immunofluorescence(IF)was performed to detect the expression of CD31,α-SMA and collagen IV;transmission electron microscopy(TEM)was conducted to observe the morphological structure of vascular cells;enzyme-linked immunosorbent assay(ELISA)was performed to measure the levels of secreted HIF-1αand TNF-α;reverse transcription-polymerase chain reaction(RT-qPCR)was performed to measure the mRNA expression of HIF-1α,TNF-α,VEGF and MMP-9;and Western blot(WB)was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets.The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets,with the greatest affinity for EGFR.Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes,such as cytokine-receptor binding,and pathways,such as those involving serine/threonine protein kinase complexes and MAPK,HIF-1 and ErbB signaling cascades.The animal experiment results were verified.First,we found that,through frankincense and/or myrrh treatment,the volume of subcutaneously transplanted HCC tumors was significantly reduced,and the pathological morphology was attenuated.Then,IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression,increased the coverage of perivascular cells,tightened the connection between cells,and improved the shape of blood vessels.In addition,ELISA,RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors,inflammatory factors and angiogenesis-related factors,namely,HIF-1α,TNF-α,VEGF and MMP-9.Furthermore,mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation,thereby inhibiting the phosphorylation activity of its downstream targets:the PI3K/Akt and MAPK(ERK,p38 and JNK)pathways.CONCLUSION In summary,frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways,highlighting the potential of this dual TCM compound as an anti-HCC candidate.展开更多
The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide se...The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.展开更多
基金Supported by National Natural Science Foundation of China,No.82074450Education Department of Hunan Province,No.21A0243,No.21B0374,No.22B0397,and No.22B0392+2 种基金Research Project of"Academician Liu Liang Workstation"of Hunan University of Traditional Chinese Medicine,No.21YS003Hunan Administration of Traditional Chinese Medicine,No.B2023001 and No.B2023009Hunan Provincial Natural Science Foundation of China,No.2023JJ40481。
文摘BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth.
基金Supported by the National Natural Science Foundation of China,No.U20A20408 and No.82074450Natural Science Foundation of Hunan Province,No.2020JJ4066 and No.2021JJ40405+1 种基金Key scientific research project of Hunan Education Department,No.21A0243Key project of academician workstation guidance project,No.21YSZQ007.
文摘BACKGROUND Centipedes have been used to treat tumors for hundreds of years in China.However,current studies focus on antimicrobial and anticoagulation agents rather than tumors.The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated.It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines.AIM To purify,characterize,and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism.METHODS An antihepatoma peptide(scolopentide)was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis,a Sephadex G-25 column,and two steps of high-performance liquid chromatography(HPLC).Additionally,the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity.The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry(QTOF MS),and the sequence was matched by using the Mascot search engine.Based on the sequence and molecular weight,scolopentide was synthesized using solid-phase peptide synthesis methods.The synthetic scolopentide was confirmed by MS and HPLC.The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro.The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo.In the tumor xenograft experiments,qualified model mice(male 5-week-old BALB/c nude mice)were randomly divided into 2 groups(n=6):The scolopentide group(0.15 mL/d,via intraperitoneal injection of synthetic scolopentide,500 mg/kg/d)and the vehicle group(0.15 mL/d,via intraperitoneal injection of normal saline).The mice were euthanized by cervical dislocation after 14 d of continuous treatment.Mechanistically,flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro.A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro.CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro.Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4(DR4)and DR5.qRT-PCR was used to measure the mRNA expression of DR4,DR5,fas-associated death domain protein(FADD),Caspase-8,Caspase-3,cytochrome c(Cyto-C),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1βconverting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice.Western blot assays were used to measure the protein expression of DR4,DR5,FADD,Caspase-8,Caspase-3,and Cyto-C in the tumor tissues.The reactive oxygen species(ROS)of tumor tissues were tested.RESULTS In the process of purification,characterization and synthesis of scolopentide,the optimal enzymatic hydrolysis conditions(extract ratio:5.86%,IC_(50):0.310 mg/mL)were as follows:Trypsin at 0.1 g(300 U/g,centipede-trypsin ratio of 20:1),enzymolysis temperature of 46°C,and enzymolysis time of 4 h,which was superior to freeze-thawing with liquid nitrogen(IC_(50):3.07 mg/mL).A peptide with the strongest antihepatoma activity(scolopentide)was further purified through a Sephadex G-25 column(obtained A2)and two steps of HPLC(obtained B5 and C3).The molecular weight of the extracted scolopentide was 1018.997 Da,and the peptide sequence was RAQNHYCK,as characterized by QTOF MS and Mascot.Scolopentide was synthesized in vitro with a qualified molecular weight(1018.8 Da)and purity(98.014%),which was characterized by MS and HPLC.Extracted scolopentide still had an antineoplastic effect in vitro,which inhibited the proliferation of Eca-109(IC_(50):76.27μg/mL),HepG2(IC_(50):22.06μg/mL),and A549(IC_(50):35.13μg/mL)cells,especially HepG2 cells.Synthetic scolopentide inhibited the proliferation of HepG2 cells(treated 6,12,and 24 h)in a concentration-dependent manner in vitro,and the inhibitory effects were the strongest at 12 h(IC_(50):208.11μg/mL).Synthetic scolopentide also inhibited the tumor volume(Vehicle vs Scolopentide,P=0.0003)and weight(Vehicle vs Scolopentide,P=0.0022)in the tumor xenograft experiment.Mechanistically,flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01%(0μg/mL),12.13%(10μg/mL),16.52%(20μg/mL),and 23.20%(40μg/mL).Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro.The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells.Molecular docking suggested that scolopentide tightly bound to DR4 and DR5,and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol,respectively.In subcutaneous xenograft tumors from mice,quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD,caspase-8 and caspase-3 through a mitochondria-independent pathway.CONCLUSION Scolopentide,an antihepatoma peptide purified from centipedes,may inspire new antihepatoma agents.Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.
基金the National Natural Science Foundation of China,No.U20A20408(Major Program)and No.82074450(General Program)Natural Science Foundation of Hunan Province,No.2020JJ4066+2 种基金Hunan Province Research and innovation projects for Postgraduates,No.CX20190541Hunan Province"domestic firstclass cultivation discipline"Integrated Traditional Chinese and Western medicine open fund project,No.2018ZXYJH03Hunan University Undergraduate Research Learning and Innovative Experiment Project,No.201609030114.
文摘BACKGROUND In traditional Chinese medicine(TCM),frankincense and myrrh are the main components of the antitumor drug Xihuang Pill.These compounds show anticancer activity in other biological systems.However,whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma(HCC)is unknown,and the potential molecular mechanism(s)has not yet been determined.AIM To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo.METHODS In the present study,which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(http://tcmspw.com/tcmsp.php),Universal Protein database(http://www.uniprot.org),GeneCards:The Human Gene Database(http://www.genecards.org/)and Comparative Toxicogenomics Database(http://www.ctdbase.org/),the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted.The core prediction targets were screened by molecular docking.In vivo,SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model,and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d.The tumors were collected and evaluated:the tumor volume and growth rate were gauged to evaluate tumor growth;hematoxylineosin staining was performed to estimate histopathological changes;immunofluorescence(IF)was performed to detect the expression of CD31,α-SMA and collagen IV;transmission electron microscopy(TEM)was conducted to observe the morphological structure of vascular cells;enzyme-linked immunosorbent assay(ELISA)was performed to measure the levels of secreted HIF-1αand TNF-α;reverse transcription-polymerase chain reaction(RT-qPCR)was performed to measure the mRNA expression of HIF-1α,TNF-α,VEGF and MMP-9;and Western blot(WB)was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways.RESULTS The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets.The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets,with the greatest affinity for EGFR.Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes,such as cytokine-receptor binding,and pathways,such as those involving serine/threonine protein kinase complexes and MAPK,HIF-1 and ErbB signaling cascades.The animal experiment results were verified.First,we found that,through frankincense and/or myrrh treatment,the volume of subcutaneously transplanted HCC tumors was significantly reduced,and the pathological morphology was attenuated.Then,IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression,increased the coverage of perivascular cells,tightened the connection between cells,and improved the shape of blood vessels.In addition,ELISA,RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors,inflammatory factors and angiogenesis-related factors,namely,HIF-1α,TNF-α,VEGF and MMP-9.Furthermore,mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation,thereby inhibiting the phosphorylation activity of its downstream targets:the PI3K/Akt and MAPK(ERK,p38 and JNK)pathways.CONCLUSION In summary,frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways,highlighting the potential of this dual TCM compound as an anti-HCC candidate.
文摘The insect cuticle plays important roles in numerous physiological functions to protect the body from invasion of pathogens, physical injury and dehydration. In this report, we conducted a comprehensive genome-wide search for genes encoding proteins with peritrophin A-type (ChtBD2) chitin-binding domain (CBD) in the silkworm, Bombyx mori. One of these genes, which encodes the cuticle protein BmCBP1, was additionally cloned, and its expression and location during the process of development and molting in B. mori were investigated. In total, 46 protein-coding genes were identified in the silkworm genome, including those encoding 15 cuticle proteins analogous to peritrophins with one CBD (CPAP1s), nine cuticle proteins analogous to peritrophins with three CBD (CPAP3s), 15 peritrophic membrane proteins (PMPs), four chitinases, and three chitin deacetylases, which contained at least one ChtBD2 domain. Microarray analysis indicated that CPAP-encoding genes were widely expressed in various tissues, whereas PMP genes were highly expressed in the midgut. Quantitative polymerase chain reaction and western blotting showed that the cuticle protein BmCBP1 was highly expressed in the epidermis and head, particularly during molting and metamorphosis. An immunofluorescence study revealed that chitin co-localized with BmCBP1 at the epidermal surface during molting. Additionally, BmCBP1 was notably up-regulated by 20-hydroxyecdysone treatment. These results provide a genome-level view of the chitin-binding protein in silkworm and suggest that BmCBP1 participates in the formation of the new cuticle during molting.