Nonlinear systems involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems, for example, many biological phenomena involving thresholds, bursting rhythm...Nonlinear systems involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems, for example, many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, population dynamics, etc., do exhibit impulsive effects. In a recent paper [1], both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles and in [2] an active control and chaos synchronization was introduced. In this paper, impulsive synchronization for the real and complex Van der Pol oscillators is systematically investigated. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set of initial conditions, the differences between the master and slave systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.展开更多
A cross-diffusion system is set up modelling the distribution of capital and labour over the land of two identical patches (cites, markets or countries) in which the per capita migration rate of each species (investme...A cross-diffusion system is set up modelling the distribution of capital and labour over the land of two identical patches (cites, markets or countries) in which the per capita migration rate of each species (investment capital or labour force) is influenced not only by its own but also by the other one’s density, i.e. there is cross-diffusion present. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross-migration response is an important factor that should not be ignored when pattern emerges.展开更多
Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and...Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and cross-diffusion are investigated. We study the effect of diffusion on the stability of the endemic equilibrium with disease-induced mortality and nonlinear incidence rate, In the absence of diffusion the stationary solution stays stable but becomes unstable with respect to diffusion and that Turing instability takes place. We show that a standard (self-diffusion) system may be either stable or unstable, cross-diffusion response can stabilize an unstable standard system or decrease a "ihlring space (the space which the emergence of spatial patterns is holding) compared to the ~lhlring space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges. Numerical simulations are provided to illustrate and extend the theoretical results.展开更多
文摘Nonlinear systems involving impulse effects, appear as a natural description of observed evolution phenomena of several real world problems, for example, many biological phenomena involving thresholds, bursting rhythm models in medicine and biology, optimal control models in economics, population dynamics, etc., do exhibit impulsive effects. In a recent paper [1], both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles and in [2] an active control and chaos synchronization was introduced. In this paper, impulsive synchronization for the real and complex Van der Pol oscillators is systematically investigated. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set of initial conditions, the differences between the master and slave systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.
文摘A cross-diffusion system is set up modelling the distribution of capital and labour over the land of two identical patches (cites, markets or countries) in which the per capita migration rate of each species (investment capital or labour force) is influenced not only by its own but also by the other one’s density, i.e. there is cross-diffusion present. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross-migration response is an important factor that should not be ignored when pattern emerges.
文摘Modeling and simulation of infectious diseases help to predict the likely outcome of an epidemic. In this paper, a spatial susceptible-infective-susceptible (SIS) type of epidemiological disease model with self- and cross-diffusion are investigated. We study the effect of diffusion on the stability of the endemic equilibrium with disease-induced mortality and nonlinear incidence rate, In the absence of diffusion the stationary solution stays stable but becomes unstable with respect to diffusion and that Turing instability takes place. We show that a standard (self-diffusion) system may be either stable or unstable, cross-diffusion response can stabilize an unstable standard system or decrease a "ihlring space (the space which the emergence of spatial patterns is holding) compared to the ~lhlring space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges. Numerical simulations are provided to illustrate and extend the theoretical results.